2. 盈江县人民医院感染科,云南 盈江 679300;
3. 德宏州人民医院(昆明医科大学附属德宏医院)普外科,云南 芒市 678400;
4. 德宏州人民医院(昆明医科大学附属德宏医院)医务科,云南 芒市 678400;
5. 德宏州人民医院(昆明医科大学附属德宏医院)影像科,云南 芒市 678400;
6. 德宏州人民医院(昆明医科大学附属德宏医院)产科,云南 芒市 678400;
7. 瑞丽市中医傣医医院新生儿科,云南 瑞丽 678600
2. Department of Infectious Diseases, Yingjiang People's Hospital, Yingjiang 679300, China;
3. Department of General Surgery, Dehong People's Hospital [Dehong Hospital Affiliated to Kunming Medical University], Mangshi 678400, China;
4. Department of Medical Administration, Dehong People's Hospital [Dehong Hospital Affiliated to Kunming Medical University], Mangshi 678400, China;
5. Department of Imaging, Dehong People's Hospital [Dehong Hospital Affiliated to Kunming Medical University], Mangshi 678400, China;
6. Department of Obstetrics, Dehong People's Hospital [Dehong Hospital Affiliated to Kunming Medical University], Mangshi 678400, China;
7. Department of Neonatology, Ruili Chinese Medicine Dai Medical Hospital, Ruili 678600, China
新型冠状病毒肺炎(coronavirus disease 2019, COVID -19)的病原体是新型冠状病毒(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2),SARS-CoV-2传染性极强,对全世界人类健康构成严重威胁[1-2]。孕妇感染SARS-CoV-2可导致孕妇和胎儿不良结局风险增加[3]。随着孕周增大、孕妇子宫变大、肺容量变小、激素水平变化、免疫功能被抑制等,孕妇COVID -19更容易转为危重型。COVID -19三胞胎孕妇分娩早产儿是否存在宫内垂直传播未见报道。现报告1例COVID -19三胞胎孕妇及分娩早产儿,总结本病的疾病特点、治疗及分娩早产儿结局。
1 临床资料 1.1 病史现病史:患者29岁,2021年7月9日因SARS-CoV-2核酸阳性13 h入院,G1P0孕28周,三胎妊娠(三绒三羊)、自然受孕,孕期规律产检无异常。入院前2周偶感乏力、心悸,无发热、咳嗽、呼吸困难,无腹痛、腹泻,无味觉、嗅觉减退,精神、睡眠可,二便正常。既往史:既往体健,家人未感染SARS-CoV-2。患者居住区为疫情流行区,患者及家人无明确的流行病学史,孕妇因怀孕未接种SARS-CoV-2疫苗,入院前6个月内多次SARS-CoV-2核酸阴性。
1.2 体格检查入院后体格检查:生命体征平稳,未吸氧下经皮氧饱和度98%,一般情况可,心肺腹查体未见异常;产科查体偶有宫缩,三胞胎胎心均正常,无阴道流血、流液。
1.3 实验室血液及体液检测使用ABI 7500实时荧光定量PCR仪(美国)进行SARS-CoV-2核酸检测,使用上海之江生物科技股份有限公司的SARS-CoV-2核酸检测试剂盒(荧光PCR法)进行核酸检测,CT值<43为阳性,结果见表 1。使用迈克i 3000全自动化学发光免疫分析仪进行SARS-CoV-2 IgM和IgG检测,使用四川迈克生物股份有限公司的SARS-CoV-2 IgM和IgG抗体检测试剂盒(直接化学发光法)进行SARS-CoV-2 IgM和IgG检测,S/CO比值<1为阴性,结果见表 2。孕妇入院后进行血常规、C反应蛋白(CRP)、降钙素原(PCT)、生化指标等检查,结果见表 3。在病程及治疗中孕妇的WBC、血小板(PLT)、淋巴细胞比率、淋巴细胞绝对值、凝血功能、PCT、乳酸脱氢酶(LDH)、肌酸激酶(CK)、空腹血糖(Glu)均未见异常。
表 1 三胞胎孕妇SARS-CoV-2核酸结果 Table 1 SARS-CoV-2 nucleic test results of pregnant woman with triplets |
![]() |
表 2 三胞胎孕妇抗体结果 Table 2 Antibody test results of pregnant woman with triplets |
![]() |
表 3 三胞胎孕妇实验室检验结果 Table 3 Laboratory test results of pregnant woman with triplets |
![]() |
病程第4天CT报告见图 1(A、B):左肺下叶前内、外基底段见斑片状磨玻璃样影,部分实变,边缘模糊,内见血管增粗见图 1(A); 部分病灶防护铅衣遮挡,双肺上叶、下叶及右肺中叶多发小片状磨玻璃影,部分实变,边缘模糊,内见血管增粗, 符合COVID -19表现。见图 1(B)。病程第52天复查CT:双肺病灶与前比较已明显吸收好转,见图 1(C)。患者转为重型COVID -19期间监测孕妇超声提示肺实变、胸膜线异常、肺水肿,治疗好转后显示正常肺影像;病程中胎心监护三个胎儿未发生宫内窘迫,早产儿出生后多次监测肺超声未见异常。
![]() |
注:A、B为孕妇病程第4天CT报告,符合COVID-19表现;C为孕妇病程第52天复查CT:双肺病灶与前比较已明显吸收好转。 图 1 三胞胎孕妇CT影像表现 Figure 1 CT image of pregnant woman with triplets |
COVID -19诊断与分型依据为《新型冠状病毒肺炎诊疗方案(试行第八版)》,诊断与主要治疗见表 4。治疗中全程进行呼吸道隔离、接触隔离、每日进行胎心监测至胎儿出生。患者于31+4周出现皮肤瘙痒,丙氨酸氨基转移酶(ALT)、门冬氨酸氨基转移酶(AST)升高,总胆汁酸(TBA)增高,排除其他肝病后诊断为重度妊娠期肝内胆汁淤积症(intrahepatic cholestasis of pregnancy,ICP)。孕妇的SARS-CoV-2抗体已形成,SARS-CoV-2 CT值接近转阴,孕妇宫高38 cm,腹围104 cm,对患者心肺压迫明显,胎龄为32+5周,预计早产儿有存活条件。因“多胎妊娠、COVID -19、三胞胎胎儿分别为头位、臀位和横位”,选择剖宫产终止妊娠。于32+5周时在腰硬联合麻醉下行剖宫产分娩。
表 4 三胞胎孕妇COVID -19诊断和主要治疗变化 Table 4 COVID -19 diagnosis and main therapeutic changes of pregnant woman with triplets |
![]() |
早产儿经剖宫产出生,出生的每个早产儿分别由新生儿陪娩转运团队(穿二级防护服)单独转运至单间新生儿重症监护病房隔离治疗,每个早产儿配备1个专属的新生儿陪娩转运团队。取3个羊膜腔的羊水分别进行SARS-CoV-2核酸检测,均为阴性,在生后1 h内、第12 h、第24 h分别完成粪便、尿、胃液、鼻拭子、咽拭子的SARS-CoV-2核酸检测,3例早产儿均为阴性,第2天把3例早产儿转移至同一护理单元进行治疗至出院,住院期间多次检测SARS-CoV-2核酸均为阴性。3例早产儿出生后立即查SARS-CoV-2抗体,IgM均为阴性(早产儿大、早产儿二和早产儿三分别为0.058、0.914、0.051),之后多次检测SARS-CoV-2 IgM均为阴性。出生后立即检查SARS-CoV-2 IgG均为阳性(早产儿大、早产儿二和早产儿三分别为4.513、3.978、4.138),之后多次检测均为阳性,随着住院时间延长数值均逐渐变小。
1.7 转归与随访终止妊娠后孕产妇的TBA、ALT、AST渐下降,ICP治愈,SARS-CoV-2核酸检测连续2次阴性后转隔离点隔离监测14 d,无SARS-CoV-2核酸复阳。3例早产儿达到出院标准后出院。出院后继续对该母子进行SARS-CoV-2核酸监测均为阴性。完善早产儿听力筛查、眼底筛查、脑功能监测、生化检测、血常规检测均未见异常。
2 讨论 2.1 疾病监测与宫内垂直传播三胞胎孕妇被诊断为COVID -19,经治疗SARS-CoV-2核酸转阴后出院。出院后需要密切监测SARS-CoV-2核酸是否复阳。相对于重症及危重型患者,年轻患者、无症状或轻微临床症状患者更容易发生复阳现象,复阳患者多数不需要特殊治疗,但需要隔离观察和监测SARS-CoV-2核酸[4-6]。SARS-CoV-2复阳原因可能为SARS-CoV-2残留再感染[7],或者SARS-CoV-2核酸检测假阴性[8], 所以要求多部位采样、多次筛查[9],要求SARS-CoV-2转阴后严格自我隔离和长期随访[10]。孕妇感染SARS-CoV-2后可对孕妇、胎儿和新生儿造成不良影响,需要进行持续监测[11-15]。本案例三胞胎孕妇随着治疗时间延长,SARS-CoV-2核酸CT值逐渐升高,在治疗第50天转为阴性,继续监测无复阳。分娩的早产儿SARS-CoV-2核酸监测均阴性。
SARS-CoV-2的受体是血管紧张转化酶,其存在于人体全身多个器官,SARS-CoV-2感染时可造成相应器官损伤[16]。呼吸道和接触传播已被证实是SARS-CoV-2主要传播途径,而粪口传播途径、母婴垂直传播途径尚有争议[17-19]。研究[20-25]结果认为,SARS-CoV-2不存在母婴途径垂直传播;也有研究[26-28]结果显示,SARS-CoV-2可能存在母婴途径垂直传播。有学者对支持SARS-CoV-2可能存在母婴途径垂直传播的的文献提出质疑,认为IgM阳性不排除孕妇感染SARS-CoV-2的同时感染了其他病毒所致[29]。关于阴道分娩安全还是剖宫产分娩安全, 尚无定论。对42例COVID -19孕妇进行研究,结果显示52.4%的孕妇经阴道分娩, 随访新生儿未感染SARS-CoV-2[24]。母乳喂养、母乳乳汁喂养是否会传播SARS-CoV-2尚不确定,48例SARS-CoV-2阳性的母亲对新生儿进行母乳喂养,结果1例新生儿检出SARS-CoV-2阳性, 其余新生儿均未检出SARS-CoV-2[30]。本例报道的孕妇剖宫产分娩,娩出的3例早产儿给予蔼尔舒奶粉喂养,监测未发生SARS-CoV-2感染。
IgG可以通过胎盘传播给胎儿, 3例早产儿出生后立即检查IgG均为阳性,之后多次检测均为阳性,不排除SARS-CoV-2 IgG经胎盘传播给早产儿,因为产妇孕期无其他病毒感染证据。三胞胎孕妇随着治疗时间延长,SARS-CoV-2 IgM在治疗第18天呈阳性,继续治疗1个月仍为阳性。SARS-CoV-2 IgG在COVID -19患者CP治疗后,在病程第7天呈阳性,在治疗第50天时仍为阳性,且数值逐渐升高。由此可知,在诊断是否发生SARS-CoV-2感染和判断疗效时,SARS-CoV-2核酸较SARS-CoV-2抗体敏感。SARS-CoV-2 IgG阳性较SARS-CoV-2 IgM阳性早不排除是输入COVID -19患者CP所致。随着孕妇病情逐渐好转,SARS-CoV-2 IgG逐渐升高;而SARS-CoV-2 IgM阳性和数值只说明近期感染SARS-CoV-2,不能反映病情变化。
2.2 COVID -19患者CP、甲泼尼龙治疗COVID -19有效,及时处理贫血、焦虑、失眠等症状对COVID -19治疗有帮助药物治疗SARS-CoV-2感染,尤其是妊娠合并SARS-CoV-2感染仍在不断研究中[19, 31-32]。文献报道COVID -19的病死率约为3.1%~7.2%, 但是在重型COVID -19中病死率约为15.7%~25.5%,在危重型COVID -19中病死率高达39.0%~61.5%[33]。研究[34-35]显示,COVID -19患者CP治疗可降低病死率,大多数COVID -19患者在出现症状3~14 d,尤其在3~5 d使用COVID -19患者CP治疗可能最有效。COVID -19患者CP被动免疫治疗的作用包括中和病毒和免疫调节等,COVID -19患者CP可以抑制病毒复制、早期炎症反应和器官组织损伤,危重型患者使用COVID -19患者CP能降低病死率,应早期使用,多次给予[36-39]。推荐COVID -19患者CP输注剂量通常为200~500 mL(4~5 mL/kg),如果捐献的CP中抗体滴度比较低,那么可能需要更大剂量[40]。COVID -19患者CP治疗的不良反应发生率约8%,主要表现为体温升高、瘙痒或皮疹[39, 41]。
较大剂量糖皮质激素的免疫抑制作用可能会延缓机体对病毒的清除, 只能3~5 d短期、每日1~2 mg/kg小剂量使用,常在呼吸困难和严重低氧血症患者中使用。良好的免疫力可杀灭、清除体内SARS-CoV-2,免疫力受睡眠质量影响[42-44],存在睡眠障碍患者的机体免疫力低下,导致机体对病毒的清除能力减弱[45-46]。本例报告中患者出现持续高热、乏力、心悸,CT影像表现提示病情加重,给予COVID -19患者CP、甲泼尼龙治疗后体温正常,病情得到控制。提示COVID -19患者CP加甲泼尼龙治疗COVID -19有效。病程中患者焦虑、失眠,给予心理治疗作用不明显,给予吗啡治疗和适量运动计划后睡眠改善。病程中及时输血纠正贫血。积极治疗COVID -19和及时处理相关症状后患者从重型转为COVID -19普通型,提示及时处理焦虑、失眠、贫血等相关症状对COVID -19治疗有帮助。
2.3 三胞胎孕妇COVID -19在病情加重时出现CRP增高、IL-6升高、Hb降低CRP常被用于感染性疾病评估,是一种敏感的炎症指标,81.5%的重症COVID -19患者CRP升高[47-48]。重型、危重型COVID -19患者常有炎症因子升高, 研究[31]显示,52%的COVID -19患者IL-6升高,可高达413.6 pg/mL。COVID -19患者可发生急性炎症反应风暴,可出现D-二聚体升高,肝酶、心肌酶增高,肌钙蛋白增高,血尿素和血肌酐升高,血糖升高,继发细菌感染时血清PCT增高等[33, 49-50]。严重时,COVID -19患者骨髓造血功能可被抑制,导致RBC生成减少或单核巨噬细胞活化产生血管外溶血,导致RBC破坏增多、Hb降低,出现贫血。所以,建议监测COVID -19患者血常规、CRP、PCT、生化指标、凝血功能、动脉血气分析、胸部影像学、细胞因子等。本例三胞胎孕妇COVID -19病情加重时出现CRP增高、IL-6升高、Hb降低明显,说明CRP增高、IL-6升高、Hb降低提示病情加重,较血常规中WBC、淋巴细胞比率、淋巴细胞绝对值、Hb、PLT,以及凝血功能更敏感。在病程及治疗中,患者血常规中WBC、淋巴细胞比率、淋巴细胞绝对值、Hb、PLT和凝血功能等未见异常,分析可能原因为在病情加重时及时治疗,尚未受影响。
研究提示,孕妇处于亚临床胆汁淤积状态,孕妇患COVID -19后更容易出现ICP[51]。肝损伤可能是病毒直接引起或由病毒诱导的全身炎性反应引起[33],43%的SARS-CoV-2感染患者合并肝损伤[51]。ICP的发生和加重可能与雌激素、甲状腺激素、环境、遗传、免疫因素等有关,ICP可能对孕妇和胎儿造成不利影响。本例报告中三胞胎孕妇在孕31+4周出现了TBA、肝功能异常、心肌酶异常和皮肤瘙痒,诊断为重度ICP,经熊去氧胆酸片治疗无明显好转,在完成激素促肺成熟后于孕32+5周时进行剖宫产娩出,分娩后TBA下降,肝功能好转,ICP治愈,提示COVID -19三胞胎孕妇ICP进展快,熊去氧胆酸片治疗效果不明显,分娩是有效的治疗方法。
综上所述,COVID -19三胞胎孕妇,经剖宫产娩出的三个早产儿未发生宫内垂直传播;在诊断是否发生SARS-CoV-2感染和判断疗效时,SARS-CoV-2核酸较SARS-CoV-2抗体敏感;随着COVID -19病情逐渐好转,SARS-CoV-2 IgG逐渐升高,而SARS-CoV-2 IgM阳性和数值只说明近期感染SARS-CoV-2,不能反映病情变化。COVID -19患者CP、甲泼尼龙治疗COVID -19有效,及时处理贫血、焦虑、失眠等相关症状对COVID -19治疗有帮助;CRP增高、IL-6升高、Hb降低提示三胞胎孕妇COVID -19病情加重,此3个指标较血常规中WBC、淋巴细胞比率、淋巴细胞绝对值、Hb、PLT,以及凝血功能更敏感。COVID -19三胞胎孕妇ICP进展快,熊去氧胆酸片治疗效果不明显,分娩是有效的治疗方法。
利益冲突:所有作者均声明不存在利益冲突。
[1] |
Zhu N, Zhang DY, Wang WL, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733. DOI:10.1056/NEJMoa2001017 |
[2] |
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2[J]. Nat Microbiol, 2020, 5(4): 536-544. DOI:10.1038/s41564-020-0695-z |
[3] |
Perlman S. Another decade, another coronavirus[J]. N Engl J Med, 2020, 382(8): 760-762. DOI:10.1056/NEJMe2001126 |
[4] |
Cheng VCC, Wong SC, To KKW, et al. Preparedness and proactive infection control measures against the emerging novel coronavirus in China[J]. J Hosp Infect, 2020, 104(3): 254-255. DOI:10.1016/j.jhin.2020.01.010 |
[5] |
An JH, Liao XJ, Xiao TY, et al. Clinical characteristics of recovered COVID -19 patients with re-detectable positive RNA test[J]. Ann Transl Med, 2020, 8(17): 1084. DOI:10.21037/atm-20-5602 |
[6] |
Atzrodt CL, Maknojia I, McCarthy RDP, et al. A guide to COVID -19: a global pandemic caused by the novel coronavirus SARS-CoV-2[J]. FEBS J, 2020, 287(17): 3633-3650. DOI:10.1111/febs.15375 |
[7] |
Zhang B, Liu SY, Dong YH, et al. Positive rectal swabs in young patients recovered from coronavirus disease 2019 (COVID -19)[J]. J Infect, 2020, 81(2): e49-e52. DOI:10.1016/j.jinf.2020.04.023 |
[8] |
Yao XH, He ZC, Li TY, et al. Pathological evidence for residual SARS-CoV-2 in pulmonary tissues of a ready-for-discharge patient[J]. Cell Res, 2020, 30(6): 541-543. DOI:10.1038/s41422-020-0318-5 |
[9] |
Deng W, Guang TW, Yang M, et al. Positive results for patients with COVID -19 discharged form hospital in Chongqing, China[J]. BMC Infect Dis, 2020, 20(1): 429. DOI:10.1186/s12879-020-05151-y |
[10] |
Fu W, Chen Q, Wang T. Letter to the editor: three cases of redetectable positive SARS-CoV-2 RNA in recovered COVID -19 patients with antibodies[J]. J Med Virol, 2020, 92(11): 2298-2301. DOI:10.1002/jmv.25968 |
[11] |
Dang D, Wang LY, Zhang C, et al. Potential effects of SARS-CoV-2 infection during pregnancy on fetuses and newborns are worthy of attention[J]. J Obstet Gynaecol Res, 2020, 46(10): 1951-1957. DOI:10.1111/jog.14406 |
[12] |
Williams PM, Fletcher S. Health effects of prenatal radiation exposure[J]. Am Fam Physician, 2010, 82(5): 488-493. |
[13] |
Chung M, Bernheim A, Mei XY, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202-207. DOI:10.1148/radiol.2020200230 |
[14] |
Liu J. Lung ultrasonography for the diagnosis of neonatal lung disease[J]. J Matern Fetal Neonatal Med, 2014, 27(8): 856-861. DOI:10.3109/14767058.2013.844125 |
[15] |
Kurepa D, Zaghloul N, Watkins L, et al. Neonatal lung ultrasound exam guidelines[J]. J Perinatol, 2018, 38(1): 11-22. DOI:10.1038/jp.2017.140 |
[16] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273. DOI:10.1038/s41586-020-2012-7 |
[17] |
To KKW, Tsang OTY, Yip CCY, et al. Consistent detection of 2019 novel coronavirus in saliva[J]. Clin Infect Dis, 2020, 71(15): 841-843. DOI:10.1093/cid/ciaa149 |
[18] |
de Graaf M, Beck R, Caccio SM, et al. Sustained fecal-oral human-to-human transmission following a zoonotic event[J]. Curr Opin Virol, 2017, 22: 1-6. DOI:10.1016/j.coviro.2016.11.001 |
[19] |
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States[J]. N Engl J Med, 2020, 382(10): 929-936. DOI:10.1056/NEJMoa2001191 |
[20] |
Zhu HP, Wang L, Fang CZ, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia[J]. Transl Pediatr, 2020, 9(1): 51-60. DOI:10.21037/tp.2020.02.06 |
[21] |
Chen HJ, Guo JJ, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID -19 infection in nine pregnant women: a retrospective review of medical records[J]. Lancet, 2020, 395(10226): 809-815. DOI:10.1016/S0140-6736(20)30360-3 |
[22] |
Dashraath P, Wong JLJ, Lim MXK, et al. Coronavirus di-sease 2019 (COVID -19) pandemic and pregnancy[J]. Am J Obstet Gynecol, 2020, 222(6): 521-531. DOI:10.1016/j.ajog.2020.03.021 |
[23] |
Prabhu M, Cagino K, Matthews KC, et al. Pregnancy and postpartum outcomes in a universally tested population for SARS-CoV-2 in New York city: a prospective cohort study[J]. BJOG, 2020, 127(12): 1548-1556. DOI:10.1111/1471-0528.16403 |
[24] |
Marín Gabriel MA, Cuadrado I, álvarez Fernández B, et al. Multicentre Spanish study found no incidences of viral transmission in infants born to mothers with COVID -19[J]. Acta Paediatr, 2020, 109(11): 2302-2308. DOI:10.1111/apa.15474 |
[25] |
Elshafeey F, Magdi R, Hindi N, et al. A systematic scoping review of COVID -19 during pregnancy and childbirth[J]. Int J Gynaecol Obstet, 2020, 150(1): 47-52. DOI:10.1002/ijgo.13182 |
[26] |
Zeng LK, Xia SW, Yuan WH, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID -19 in Wuhan, China[J]. JAMA Pediatr, 2020, 174(7): 722-725. DOI:10.1001/jamapediatrics.2020.0878 |
[27] |
Dong L, Tian JH, He SM, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn[J]. JAMA, 2020, 323(18): 1846-1848. |
[28] |
Zeng H, Xu C, Fan JL, et al. Antibodies in infants born to mothers with COVID -19 pneumonia[J]. JAMA, 2020, 323(18): 1848-1849. |
[29] |
Kimberlin DW, Stagno S. Can SARS-CoV-2 infection be acquired in utero?: more definitive evidence is needed[J]. JAMA, 2020, 323(18): 1788-1789. |
[30] |
Lackey KA, Pace RM, Williams JE, et al. SARS-CoV-2 and human milk: what is the evidence?[J]. Matern Child Nutr, 2020, 16(4): e13032. |
[31] |
Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506. DOI:10.1016/S0140-6736(20)30183-5 |
[32] |
Chan JFW, Yuan SF, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster[J]. Lancet, 2020, 395(10223): 514-523. DOI:10.1016/S0140-6736(20)30154-9 |
[33] |
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study[J]. Lancet Respir Med, 2020, 8(5): 475-481. DOI:10.1016/S2213-2600(20)30079-5 |
[34] |
Hung IF, To KK, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection[J]. Clin Infect Dis, 2011, 52(4): 447-456. DOI:10.1093/cid/ciq106 |
[35] |
To KKW, Tsang OTY, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and se-rum antibody responses during infection by SARS-CoV-2: an observational cohort study[J]. Lancet Infect Dis, 2020, 20(5): 565-574. DOI:10.1016/S1473-3099(20)30196-1 |
[36] |
Shen CG, Wang ZQ, Zhao F, et al. Treatment of 5 critically ill patients with COVID -19 with convalescent plasma[J]. JAMA, 2020, 323(16): 1582-1589. DOI:10.1001/jama.2020.4783 |
[37] |
Pan Y, Zhang DT, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples[J]. Lancet Infect Dis, 2020, 20(4): 411-412. DOI:10.1016/S1473-3099(20)30113-4 |
[38] |
Hung IFN, To KKW, Lee CK, et al. Hyperimmune Ⅳ immunoglobulin treatment: a multicenter double-blind rando-mized controlled trial for patients with severe 2009 influenza A(H1N1) infection[J]. Chest, 2013, 144(2): 464-473. DOI:10.1378/chest.12-2907 |
[39] |
Gutfraind A, Meyers LA. Evaluating large-scale blood transfusion therapy for the current Ebola epidemic in Liberia[J]. J Infect Dis, 2015, 211(8): 1262-1267. DOI:10.1093/infdis/jiv042 |
[40] |
Luke TC, Kilbane EM, Jackson JL, et al. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment?[J]. Ann Intern Med, 2006, 145(8): 599-609. DOI:10.7326/0003-4819-145-8-200610170-00139 |
[41] |
van Griensven J, Edwards T, de Lamballerie X, et al. Evaluation of convalescent plasma for Ebola virus disease in Guinea[J]. N Engl J Med, 2016, 374(1): 33-42. DOI:10.1056/NEJMoa1511812 |
[42] |
Besedovsky L, Lange T, Born J. Sleep and immune function[J]. Pflugers Arch, 2012, 463(1): 121-137. DOI:10.1007/s00424-011-1044-0 |
[43] |
Almeida CMOD, Malheiro A. Sleep, immunity and shift workers: a review[J]. Sleep Sci, 2016, 9(3): 164-168. DOI:10.1016/j.slsci.2016.10.007 |
[44] |
Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective[J]. Annu Rev Psychol, 2015, 66: 143-172. DOI:10.1146/annurev-psych-010213-115205 |
[45] |
Huang XJ, Li HQ, Meyers K, et al. Burden of sleep distur-bances and associated risk factors: a cross-sectional survey among HIV-infected persons on antiretroviral therapy across China[J]. Sci Rep, 2017, 7(1): 3657. DOI:10.1038/s41598-017-03968-3 |
[46] |
Taylor DJ, Kelly K, Kohut ML, et al. Is insomnia a risk factor for decreased influenza vaccine response?[J]. Behav Sleep Med, 2017, 15(4): 270-287. DOI:10.1080/15402002.2015.1126596 |
[47] |
Groeneveld GH, van't Wout JW, Aarts NJ, et al. Prediction model for pneumonia in primary care patients with an acute respiratory tract infection: role of symptoms, signs, and biomarkers[J]. BMC Infect Dis, 2019, 19(1): 976. DOI:10.1186/s12879-019-4611-1 |
[48] |
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 82(18): 1708-1720. |
[49] |
Wang DW, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061-1069. DOI:10.1001/jama.2020.1585 |
[50] |
Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223): 507-513. DOI:10.1016/S0140-6736(20)30211-7 |
[51] |
Pascual MJ, Serrano MA, El-Mir MY, et al. Relationship between asymptomatic hypercholanaemia of pregnancy and progesterone metabolism[J]. Clin Sci (Lond), 2002, 102(5): 587-593. DOI:10.1042/CS20010258 |