口腔暴露在各种各样的共生和致病微生物群中,微生物多样性的失调可引发口腔内的局部疾病和全身性疾病[1]。唾液是口腔中的主要成分,在口腔稳态和防御病原体方面起着重要作用[2]。具体来说,宿主产生的唾液抗菌肽(antimicrobial peptide, AMP)在先天免疫中发挥着关键作用,因为其构成了抵御微生物物种的第一道防线。特别是富组蛋白(histatins, Hst),作为一组具有促进伤口愈合特性的抗菌和抗炎肽,被认为对维持口腔黏膜的健康至关重要。而富组蛋白5(Hst-5)作为Hst中最丰富和最显著的成员,独特地表现出对真菌病原体白念珠菌的有效杀伤活性[3-4]。随着近几年的研究,发现Hst-5在白念珠菌感染中具有一定的抗菌潜力。因此,本文结合Hst-5在白念珠菌中的作用机制及其目前的研究进展,旨在解决临床治疗白念珠菌感染这一难题提供新方向。
1 Hst-5概述Hst是一类含有丰富组氨酸的抗菌肽家族,主要由唾液腺分泌。根据氨基酸的化学性质和序列,可分为多种不同的富组蛋白,其中以Hst-1、Hst-3和Hst-5最为常见,占富组蛋白家族的85%[5-6]。而Hst-5是其中研究最广泛、最有效的抗念珠菌感染肽,具有24个氨基酸,一级氨基酸序列为DSHAKRHHGYKRKFHEKHHSHRGY,其α螺旋二级结构有助于Hst-5进入病原体的细胞质[7-8]。白念珠菌具有侵入和破坏口腔上皮细胞的能力,而唾液的抗菌效力与Hst-5浓度成正比。Hst-5能抑制白念珠菌的菌丝形成,进而保护口腔上皮细胞,并降低由白念珠菌感染所致的细胞凋亡[9-10]。生物膜作为白念珠菌的重要毒力因子,使得生物膜状态下白念珠菌的抗真菌药物最低抑菌浓度(minimum inhibitory concentration,MIC)比浮游状态下高出上千倍[11]。Hst-5作为有效抗菌肽,能使生物膜状态下的细胞代谢活性降低56%,并且Hst-5能有效抑制耐氟康唑白念珠菌的生物膜形成[12]。通过构建多重耐药酿酒酵母菌模型,发现Hst-5具有逆转多重耐药表型的能力。并且在Hst-5存在下,酵母菌外排蛋白的ATP酶活性降低65%[13]。Hst-5因具有对白念珠菌显著的抗菌活力且其诱导的耐药性低等特性,使其成为治疗多重耐药真菌的有力候选者[14]。
宿主抗菌肽通常以阳离子和两亲性的特性,具有较高的结构可塑性,以线性、α螺旋、β螺旋等结构于细胞膜,通过桶板模型、孔环状模型、地毯模型发挥其抗菌作用[15]。Hst-5在宿主抗菌肽中较特殊,其弱两亲性使Hst-5通常不以传统的三大模型发挥抗菌性,而是通过膜电位和膜蛋白受体从细胞外空间易位到细胞质靶向线粒体,导致线粒体跨膜电位丢失或抑制呼吸链产生活性氧(reactive oxygen species,ROS)的大量累积,使线粒体腺苷三磷酸(adenosine triphosphate,ATP)合成减少,迫使白念珠菌生物能量系统崩溃[16]。相关研究[17]显示,Hst-5作用白念珠菌后,造成ATP能量泄漏,使胞外ATP增加65倍。由此可见,Hst-5通过与线粒体的作用引起ATP外排和氧化应激导致白念珠菌死亡,可能是其独特的抗菌机制。
2 Hst-5与其衍生肽分泌型天冬氨酸蛋白酶(secreted aspartyl proteinase, Saps)是白念珠菌的重要毒力因子,在面对Hst-5的强大抗菌活性下,Hst-5能被Saps切割和降解,并且Saps中以Sap2对Hst-5中赖氨酸的切割使其活性丢失最大[18-19]。因此,通过单个或多个氨基酸的添加和取代,不但能增强Hst-5对蛋白酶水解的抗性,更能提高Hst-5的抗菌活性,见表 1。其中,大量的修饰肽如K5R、K5L、K11R、K11L、K13H、K13E、K13R、K13L、K16R、K16L、K17R、K17L均源于母体肽Hst-5的单个氨基酸修饰[19-20]。其中K11和K17被精氨酸取代最有益,K17R分别与Sap2和Sap9体外孵育后仍能得到100%和82%片段肽,而母体肽仅存61%和47%,K11R能将MIC值从母体肽的152 μg/mL降低至77 μg/mL[19]。单独的K11R修饰导致抗菌活性的增强,而单独的K17R修饰极大地提高了对蛋白水解酶的抵抗力。在Ikonomova等[20]的研究中将两种优势结合形成的K11R-K17R,分别与Sap2和Sap9孵育后检测完整肽保留了100%和88%,还能将母体肽100 μM MIC值降低至25 μM,并且在与HEK 293T细胞的毒性检测中,K11R-K17R造成的细胞损伤率仅为母体肽的64%。与母体肽相比,K11R-K17R处理过的电解质多层膜能明显减少薄膜表面白念珠菌的生长,可观察到K11R-K17R处理作用下,菌丝的形成和延伸十分有限[11]。由此可见,对母体肽Hst-5进行氨基酸修饰,既能减少Saps的降解又能增强抗菌活性,还不会导致产生对哺乳动物细胞的毒性,为白念珠菌感染的治疗提供了一种新策略。
表 1 Hst-5与其衍生肽序列 |
![]() |
除了对母体肽进行氨基酸修饰外,发现其截断的肽片段同样具有抗菌活性。P-113作为Hst-5最小的截断变体,尽管P-113片段变短,但其仍能保持对真菌强大的抗菌活性,故推测Hst-5的抗菌活性片段在P-113中[26]。因此不少学者将研究聚焦于P-113的结构上,便有了其衍生肽P-113Du、P-113Tri。P-113Du和P-113Tri比P-113更能抵抗高盐和低pH环境,因此能发挥更大抗菌效力,在对白念珠菌半数致死量中,P-113Du和P-113Tri分别以1.14、1.125 μg/mL显著优于P-113的6.9 μg/mL。通过观察衍生肽对白念珠菌生物膜的影响,发现P-113Du和P-113Tri处理后,细胞表面呈盘状凹陷,而P-113处理后无此现象[21]。这可能说明P-113Du、P-113Tri和P-113在杀死白念珠菌中发挥着不同的机制。在Xue等[22]研究中,P-113Du、P-113Tri和P-113都可以靶向线粒体复合物Ⅰ中的NADH脱氢酶,抑制细胞呼吸并诱导ROS的产生,其中以P-113Tri对细胞呼吸抑制活性最高。除此以外,P-113Du和P-113Tri似乎还能定位于细胞表面,与细胞表面和隔膜结合,发挥其进入细胞内通路的抗菌活性,因此P-113Du和P-113Tri杀菌活性较P-113强[22]。Lin等[27]研究证实P-113能迅速进入白念珠菌细胞,而P-113Tri大部分留在细胞表面与碳水化合物结合。在聚糖蛋白阵列筛选中,发现40种聚糖靶标能被P-113Tri结合,如最常见的α-甘露糖,而测试中没有与P-113结合的聚糖。Cheng等[23]研究揭示了这种抗菌机制,利用β-(4, 4β-联苯)丙氨酸(Bip)和β-二苯丙氨酸(Dip)取代P-113组氨酸残基(His4、His5和His12)合成了Bip-P-113和Dip-P-113。同样发现P-113在与念珠菌孵育5 min后积聚在细胞质中,但Bip-P-113和Dip-P-113积聚在细胞表面并且没有转移到细胞质中。在电子显微镜下观察发现,Bip-P-113和Dip-P-11处理过的白念珠菌细胞膜表面出现波纹并显示出深孔形成。这表明,Bip-P-113和Dip-P-113的抗真菌活性涉及细胞膜破坏,可能与P-113Tri有着相同的抗菌机制。
将Hst-5进行拼接修饰也是获得其衍生肽的一种方式,KM29作为Hst-5的另一种变体,通过与质膜相互作用进入细胞,导致孔隙形成和利用质膜运输机制,随后靶向线粒体,使其功能受到损伤[24]。通常而言,抗菌肽进入细胞需要与细胞表面接触,通过内吞或易位进入细胞,由此可见抗菌肽的两亲性在结合细胞表面时显得尤为重要。dhvar4和dhvar5便是基于Hst-5活性区域的两种衍生肽,dhvar5与母体肽两亲性相当,而dhvar4有更强的两亲性。两亲性的增强使得抗菌肽更易通过脂质双层迁移至细胞内。与Hst-5相比,dhvar4和dhvar5对线粒体显示出更大的破坏作用,且不受线粒体活性的牵制[25]。由此可见,Hst-5作为人体重要的宿主抗菌肽,其自身和基于母体肽的衍生物对白念珠菌都具有极好的抗菌效力。
3 Hst-5与转运蛋白白念珠菌具有利用外源性氨基酸和细胞中挥发性氨的释放改变胞外pH的能力,pH值的升高促进菌丝的生长,这也是该物种的关键毒力特征,氨基酸分解代谢酶(Dur)便是其发挥碱化功能的重要蛋白。其中,Dur3和Dur31作为白念珠菌多胺转运蛋白,能促进Hst-5进入细胞[11],见图 1。过表达Dur3的细胞对Hst-5的摄取速度更快且细胞内Hst-5积累更高,而双缺失突变体Δdur3/Δdur31在试验过程中几乎无摄取Hst-5的能力[28]。表明Dur3和Dur31是参与白念珠菌中Hst-5细胞内易位的质膜转运蛋白,使其易位进入细胞发挥抗菌作用。像此类作为白念珠菌的毒力蛋白,又能作为Hst-5转运蛋白的“双向蛋白”还有Ssa1/2p。Ssa1p和Ssa2p是HSP90热休克蛋白家族的成员,作为一种侵入蛋白,在白念珠菌细胞表面表达。可与宿主细胞钙黏蛋白结合,诱导宿主发挥内吞作用,这对于白念珠菌损伤宿主细胞并诱导口咽疾病至关重要[29]。而白念珠菌细胞壁Ssa蛋白能结合并促进Hst-5的输入,其中Ssa2p的作用强于Ssa1p[30]。
![]() |
图 1 Hst-5与转运蛋白及相关通路之间的作用机制图 |
TRK1转运蛋白作为白念珠菌质膜钾离子特异性转运蛋白,能摄入钾维持自身的稳态[31]。Baev等[32]研究发现,TRK1是Hst-5的抗菌效应分子,能作为质膜通道提供ATP丢失的途径。这说明TRK通路能响应Hst-5的抗菌作用,可能通过关闭对钾的摄取亦或反向外排胞内钾,导致离子失衡,最终细胞死亡。此外,Tok1p蛋白也能响应Hst-5的抗菌作用,形成一个钾离子外排通道,而Tok1p通常不作为Hst-5的直接靶点,可能只起协同调节作用[33]。
面对Hst-5的强大抗菌作用,白念珠菌除了Saps外,同样也存在多种外排蛋白,以此降低对Hst-5的敏感性。在耐药基因上调导致氟康唑耐药过程中,发现FLU1的过表达,说明FLU1和白念珠菌耐药可能存在相关性[34]。FLU1Δ/Δ的白念珠菌对于Hst-5外排率显著降低,且在Hst-5作用下,FLU1Δ/Δ细胞减少了生物膜的形成[35]。而Msb2作为另一种膜蛋白,能响应外部刺激触发念珠菌的生长和菌丝的形成,以此保证念珠菌细胞壁的完整性,是白念珠菌在感染宿主中存活的信号蛋白[36]。在体外将Hst-5与Msb2孵育,发现Hst-5活性降低至38%[37]。由此可见,FLU1和Msb2可能介导了白念珠菌对Hst-5的外排作用,以此降低其在白念珠菌中的杀伤力。
4 Hst-5与MAPK信号通路丝裂原活化蛋白激酶(mitogen-activated protein kinases, MAPK)是真菌信号传导的关键介质,参与对外界压力的反应和自身发育的过程。存在于白念珠菌中的主要有四条通路:Cek1/2途径、HOG1途径和Mkc1途径[38]。Cek1主要参与白念珠菌菌丝的形成,在外界环境压力下能激活Cek1途径,Cek1磷酸化导致白念珠菌对Hst-5摄取的增加,通过阻断白念珠菌细胞表面β-1, 3-葡聚糖,导致Hst-5杀伤力减弱,表明Cek1途径的激活可能通过暴露细胞壁β-1, 3-葡聚糖来影响Hst-5的抗菌效力[39]。而作为Cek1途径负向调节因子的HOG1,能提高白念珠菌对宿主抗菌期遇到的各种应激条件下的抵抗力,其中包括抗菌肽对白念珠菌产生的渗透压和氧化应激反应[40]。Hst-5能促使HOG1磷酸化,并且白念珠菌HOG1敲除突变株表现出对Hst-5的超敏性,而其余途径的突变株并没有表现出对Hst-5的敏感差异[41]。因此,白念珠菌对Hst-5的防御主要依赖于HOG1途径。而对于细胞壁完整性通路Mkc1而言,单独使用Hst-5处理Mkc1Δ/Δ细胞时,与对照组比较,抗菌效力差异无统计学意义。但Hst-5与锌的使用会增加白念珠菌Mkc1信号传导,增强60%的杀伤活性,由此说明金属离子可能在MAPK途径中起到对Hst-5的增强作用[42]。
5 Hst-5与金属离子唾液是一种复杂的体液,其中包含了多种金属离子,Hst-5具有多种离子(铜和锌)的结合基序,使Hst-5二级螺旋结构更加稳定,进而影响其抗菌活性[43]。体外将Hst-5与铜联合处理后,能改善半数有效浓度(EC50)从5 μM降至1 μM[44]。而锌能放大Hst-5和其衍生肽P113的抗菌作用,使白念珠菌细胞膜透化,加速ATP的外排,提高其对白念珠菌的杀伤力[45]。并且,Hst-5与锌的使用能增加Mkc1信号传导,使白念珠菌细胞壁成分几丁质、葡聚糖和甘露糖充分暴露,在体外增加了对口腔上皮细胞的贴壁性,但降低了白念珠菌的侵入能力,也降低了上皮细胞炎症因子的释放[42]。Campbell等[46]研究发现,锌抑制了Hist-5内化和抗真菌活性。目前对于锌和Hst-5的相互作用还存在争议,Puri等[47]研究表明,锌自身存在杀菌作用,在特定浓度下能放大Hst-5的抗菌效力。同样,也有多种离子能削弱Hst-5对白念珠菌的杀伤作用。例如,相比Hst-5对白念珠菌55%的杀伤作用,Hst-5在与铁结合时杀伤力会降低至39%,若铁加量,Hst-5的杀伤力仅有25%[47]。体外孵育Hst-5和氯化钙(CaCl2),发现钙离子会解离70%与白念珠菌结合的Hst-5,以此减弱Hst-5的抗菌作用[48]。由此可见,与金属离子的结合可能是Hst-5在白念珠菌中的潜在抗菌机制。
6 展望白念珠菌是临床中最常分离的真菌病原体,在侵袭性念珠菌病的致病菌中占90%以上。氟康唑、伊曲康唑和两性霉素B是常用的抗真菌药物,其严重的副作用限制了它们的应用[49-50]。而且随着唑类药物在临床中的长期广泛使用,白念珠菌感染对目前可用的抗真菌药物产生的耐药性更是一个日益严重的问题,临床中近7%的血液分离株表现出耐药性[11]。抗真菌药物选择有限,以及病原体对现有药物内在耐药性使抗真菌治疗的治疗方式复杂化。但抗菌肽的出现,无疑给治疗真菌感染提供了新策略。Hst-5作为唾液中最丰富的抗菌肽,不论是其自身还是其变体肽,在抗白念珠菌中都显示出良好的抗菌效力。目前,抗菌肽的膜破坏和细胞内易位是抗念珠菌中的两种主要机制,而Hst-5以后者为主。与细菌不同,真菌细胞壁由几丁质、葡聚糖和甘露糖组成,削弱了Hst-5与其胞膜的结合,导致Hst-5递送效率和抗真菌作用降低。但已有研究[51-52]表明,利用纳米材料的可编辑性、生物相容性和稳定性,从而控制和延长抗菌肽的释放,作为递送载体以提高Hst-5的转运效率和抗菌能力。K11R-K17R作为Hst-5有效的衍生肽,利用聚合物的生物黏性水凝胶作为输送系统,开发出了一种口服治疗剂。除保持其抗菌特性外,还发现能促进口腔角质形成细胞的细胞增殖和细胞快速迁移,表明了其促进伤口愈合的特性[53]。由此可见,将Hst-5和其衍生肽与生物材料结合可以作为一种新型抗菌工具,这将为解决目前临床抗真菌药物选择的局限性和耐药性另辟新径,这也表明了Hst-5具有作为有效抗真菌药物的良好前景。
利益冲突:所有作者均声明不存在利益冲突。
[1] |
Oka A, Okano M. Relationship between saliva and sublingual immunotherapy[J]. Pathogens, 2021, 10(11): 1358. DOI:10.3390/pathogens10111358 |
[2] |
Lönnqvist E, Gröndahl-Yli-Hannuksela K, Loimaranta V, et al. Low rate of asymptomatic carriage and salivary immunoglobulin A response to group A Streptococci in the healthy adult population in Finland[J]. Med Microbiol Immunol, 2022, 211(5-6): 261-267. DOI:10.1007/s00430-022-00750-9 |
[3] |
Alfaifi A, Sultan AS, Montelongo-Jauregui D, et al. Long-term post-COVID -19 associated oral inflammatory sequelae[J]. Front Cell Infect Microbiol, 2022, 12: 831744. DOI:10.3389/fcimb.2022.831744 |
[4] |
Johnstone KF, Herzberg MC. Antimicrobial peptides: defending the mucosal epithelial barrier[J]. Front Oral Health, 2022, 3: 958480. DOI:10.3389/froh.2022.958480 |
[5] |
Khurshid Z, Najeeb S, Mali M, et al. Histatin peptides: pharmacological functions and their applications in dentistry[J]. Saudi Pharm J, 2017, 25(1): 25-31. DOI:10.1016/j.jsps.2016.04.027 |
[6] |
Luong AD, Buzid A, Luong JHT. Important roles and potential uses of natural and synthetic antimicrobial peptides (AMPs) in oral diseases: cavity, periodontal disease, and thrush[J]. J Funct Biomater, 2022, 13(4): 175. DOI:10.3390/jfb13040175 |
[7] |
Schnaider L, Rosenberg A, Kreiser T, et al. Peptide self-assembly is linked to antibacterial, but not antifungal, activity of histatin 5 derivatives[J]. mSphere, 2020, 5(2): e00021-20. |
[8] |
Zolin GVS, Fonseca FHD, Zambom CR, et al. Histatin 5 metallopeptides and their potential against Candida albicans pathogenicity and drug resistance[J]. Biomolecules, 2021, 11(8): 1209. DOI:10.3390/biom11081209 |
[9] |
Moffa EB, Mussi MCM, Xiao YZ, et al. Histatin 5 inhibits adhesion of C. albicans to reconstructed human oral epithelium[J]. Front Microbiol, 2015, 6: 885. |
[10] |
Khan SA, Fidel PL Jr, Thunayyan AA, et al. Impaired histatin-5 levels and salivary antimicrobial activity against C. albicans in HIV infected individuals[J]. J AIDS Clin Res, 2013, 4(193): 1000193. |
[11] |
Vitális E, Nagy F, Tóth Z, et al. Candida biofilm production is associated with higher mortality in patients with candidaemia[J]. Mycoses, 2020, 63(4): 352-360. DOI:10.1111/myc.13049 |
[12] |
Curvelo JAR, Moraes DCD, Anjos CAD, et al. Histatin 5 and human lactoferrin inhibit biofilm formation of a fluconazole resistant Candida albicans clinical isolate[J]. An Acad Bras Cienc, 2019, 91(1): e20180045. DOI:10.1590/0001-3765201920180045 |
[13] |
da Rocha Curvelo JA, Reis de Sá LF, Moraes DC, et al. Histatin-5 induces the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisae[J]. J Mycol Med, 2018, 28(1): 137-142. DOI:10.1016/j.mycmed.2017.11.002 |
[14] |
Pathirana RU, Friedman J, Norris HL, et al. Fluconazole-resistant Candida auris is susceptible to salivary histatin 5 ki-lling and to intrinsic host defenses[J]. Antimicrob Agents Chemother, 2018, 62(2): e01872-17. |
[15] |
Ting DSJ, Mohammed I, Lakshminarayanan R, et al. Host defense peptides at the ocular surface: roles in health and major diseases, and therapeutic potentials[J]. Front Med (Lausanne), 2022, 9: 835843. |
[16] |
Komatsu T, Salih E, Helmerhorst EJ, et al. Influence of histatin 5 on Candida albicans mitochondrial protein expression assessed by quantitative mass spectrometry[J]. J Proteome Res, 2011, 10(2): 646-655. DOI:10.1021/pr100861k |
[17] |
Edgerton M, Koshlukova SE, Araujo MW, et al. Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways[J]. Antimicrob Agents Chemother, 2000, 44(12): 3310-3316. DOI:10.1128/AAC.44.12.3310-3316.2000 |
[18] |
Bochenska O, Rapala-Kozik M, Wolak N, et al. The action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5[J]. Acta Biochim Pol, 2016, 63(3): 403-410. |
[19] |
Ikonomova SP, Moghaddam-Taaheri P, Jabra-Rizk MA, et al. Engineering improved variants of the antifungal peptide histatin 5 with reduced susceptibility to Candida albicans secreted aspartic proteases and enhanced antimicrobial potency[J]. FEBS J, 2018, 285(1): 146-159. DOI:10.1111/febs.14327 |
[20] |
Ikonomova SP, Moghaddam-Taaheri P, Wang Y, et al. Effects of histatin 5 modifications on antifungal activity and kinetics of proteolysis[J]. Protein Sci, 2020, 29(2): 480-493. DOI:10.1002/pro.3767 |
[21] |
Lin GY, Chen HF, Xue YP, et al. The antimicrobial peptides P-113Du and P-113Tri function against Candida albicans[J]. Antimicrob Agents Chemother, 2016, 60(10): 6369-6373. DOI:10.1128/AAC.00699-16 |
[22] |
Xue YP, Kao MC, Lan CY. Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity[J]. Sci Rep, 2019, 9(1): 13694. DOI:10.1038/s41598-019-50114-2 |
[23] |
Cheng KT, Wu CL, Yip BS, et al. The interactions between the antimicrobial peptide P-113 and living Candida albicans cells shed light on mechanisms of antifungal activity and resis-tance[J]. Int J Mol Sci, 2020, 21(7): 2654. DOI:10.3390/ijms21072654 |
[24] |
Bullock CB, McNabb DS, Pinto I. Whole-genome approach to understanding the mechanism of action of a histatin 5-derived peptide[J]. Antimicrob Agents Chemother, 2020, 64(3): e01698-19. |
[25] |
Ruissen AL, Groenink J, Helmerhorst EJ, et al. Effects of histatin 5 and derived peptides on Candida albicans[J]. Biochem J, 2001, 356(Pt 2): 361-368. |
[26] |
Rothstein DM, Spacciapoli P, Tran LT, et al. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5[J]. Antimicrob Agents Chemother, 2001, 45(5): 1367-1373. DOI:10.1128/AAC.45.5.1367-1373.2001 |
[27] |
Lin GY, Chang CF, Lan CY. The interaction between carbohydrates and the antimicrobial peptide P-113Tri is involved in the killing of Candida albicans[J]. Microorganisms, 2020, 8(2): 299. DOI:10.3390/microorganisms8020299 |
[28] |
Kumar R, Chadha S, Saraswat D, et al. Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins[J]. J Biol Chem, 2011, 286(51): 43748-43758. DOI:10.1074/jbc.M111.311175 |
[29] |
Sun JN, Solis NV, Phan QT, et al. Host cell invasion and viru-lence mediated by Candida albicans Ssa1[J]. PLoS Pathog, 2010, 6(11): e1001181. DOI:10.1371/journal.ppat.1001181 |
[30] |
Li XS, Sun JN, Okamoto-Shibayama K, et al. Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity[J]. J Biol Chem, 2006, 281(32): 22453-22463. DOI:10.1074/jbc.M604064200 |
[31] |
Ruiz-Castilla FJ, Rodríguez-Castro E, Michán C, et al. The potassium transporter Hak1 in Candida albicans, regulation and physiological effects at limiting potassium and under acidic conditions[J]. J Fungi (Basel), 2021, 7(5): 362. DOI:10.3390/jof7050362 |
[32] |
Baev D, Rivetta A, Vylkova S, et al. The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5[J]. J Biol Chem, 2004, 279(53): 55060-55072. DOI:10.1074/jbc.M411031200 |
[33] |
Baev D, Rivetta A, Li XS, et al. Killing of Candida albicans by human salivary histatin 5 is modulated, but not determined, by the potassium channel TOK1[J]. Infect Immun, 2003, 71(6): 3251-3260. DOI:10.1128/IAI.71.6.3251-3260.2003 |
[34] |
Hampe IAI, Friedman J, Edgerton M, et al. An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses[J]. PLoS Pathog, 2017, 13(9): e1006655. DOI:10.1371/journal.ppat.1006655 |
[35] |
Li R, Kumar R, Tati S, et al. Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity[J]. Antimicrob Agents Chemother, 2013, 57(4): 1832-1839. DOI:10.1128/AAC.02295-12 |
[36] |
Swidergall M, Ernst AM, Ernst JF. Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides[J]. Antimicrob Agents Chemother, 2013, 57(8): 3917-3922. DOI:10.1128/AAC.00862-13 |
[37] |
Puri S, Friedman J, Saraswat D, et al. Candida albicans shed Msb2 and host mucins affect the candidacidal activity of salivary Hst 5[J]. Pathogens, 2015, 4(4): 752-763. DOI:10.3390/pathogens4040752 |
[38] |
González-Rubio G, Fernández-Acero T, Martín H, et al. Mitogen-activated protein kinase phosphatases (MKPs) in fungal signaling: conservation, function, and regulation[J]. Int J Mol Sci, 2019, 20(7): 1709. DOI:10.3390/ijms20071709 |
[39] |
Li R, Puri S, Tati S, et al. Candida albicans Cek1 mitogen-activated protein kinase signaling enhances fungicidal activity of salivary histatin 5[J]. Antimicrob Agents Chemother, 2015, 59(6): 3460-3468. DOI:10.1128/AAC.00214-15 |
[40] |
Day AM, Quinn J. Stress-activated protein kinases in human fungal pathogens[J]. Front Cell Infect Microbiol, 2019, 9: 261. DOI:10.3389/fcimb.2019.00261 |
[41] |
Vylkova S, Jang WS, Li WS, et al. Histatin 5 initiates osmo-tic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway[J]. Eukaryot Cell, 2007, 6(10): 1876-1888. DOI:10.1128/EC.00039-07 |
[42] |
Norris HL, Kumar R, Edgerton M. A novel role for histatin 5 in combination with Zinc to promote commensalism in C. albicans survivor cells[J]. Pathogens, 2021, 10(12): 1609. DOI:10.3390/pathogens10121609 |
[43] |
Melino S, Santone C, Di Nardo P, et al. Histatins: salivary peptides with copper(Ⅱ)- and zinc(Ⅱ)-binding motifs: perspectives for biomedical applications[J]. FEBS J, 2014, 281(3): 657-672. DOI:10.1111/febs.12612 |
[44] |
Conklin SE, Bridgman EC, Su Q, et al. Specific histidine residues confer histatin peptides with copper-dependent activity against Candida albicans[J]. Biochemistry, 2017, 56(32): 4244-4255. DOI:10.1021/acs.biochem.7b00348 |
[45] |
Norris HL, Kumar R, Ong CY, et al. Zinc binding by histatin 5 promotes fungicidal membrane disruption in C. albicans and C. glabrata[J]. J Fungi (Basel), 2020, 6(3): 124. DOI:10.3390/jof6030124 |
[46] |
Campbell JX, Gao S, Anand KS, et al. Zinc binding inhibits cellular uptake and antifungal activity of histatin-5 in Candida albicans[J]. ACS Infect Dis, 2022, 8(9): 1920-1934. DOI:10.1021/acsinfecdis.2c00289 |
[47] |
Puri S, Li R, Ruszaj D, et al. Iron binding modulates candidacidal properties of salivary histatin 5[J]. J Dent Res, 2015, 94(1): 201-208. DOI:10.1177/0022034514556709 |
[48] |
Dong J, Vylkova S, Li XS, et al. Calcium blocks fungicidal activity of human salivary histatin 5 through disruption of binding with Candida albicans[J]. J Dent Res, 2003, 82(9): 748-752. DOI:10.1177/154405910308200917 |
[49] |
Li XH, Hu Q, Lin Q, et al. Inhibition of Candida albicans in vivo and in vitro by antimicrobial peptides chromogranin A-N12 through microRNA-155/suppressor of cytokine signaling 1 axis[J]. Bioengineered, 2022, 13(2): 2513-2524. DOI:10.1080/21655979.2021.2017680 |
[50] |
Maione A, Bellavita R, de Alteriis E, et al. WMR peptide as antifungal and antibiofilm against albicans and non-albicans Candida species: shreds of evidence on the mechanism of action[J]. Int J Mol Sci, 2022, 23(4): 2151. DOI:10.3390/ijms23042151 |
[51] |
Zhang BW, Qin X, Zhou M, et al. Tetrahedral DNA nanostructure improves transport efficiency and anti-fungal effect of histatin 5 against Candida albicans[J]. Cell Prolif, 2021, 54(5): e13020. |
[52] |
Zambom CR, da Fonseca FH, Crusca E Jr, et al. A novel antifungal system with potential for prolonged delivery of histatin 5 to limit growth of Candida albicans[J]. Front Microbiol, 2019, 10: 1667. DOI:10.3389/fmicb.2019.01667 |
[53] |
Sultan AS, Vila T, Hefni E, et al. Evaluation of the antifungal and wound-healing properties of a novel peptide-based bioadhesive hydrogel formulation[J]. Antimicrob Agents Chemother, 2019, 63(10): e00888-19. |