文章快速检索 高级检索
  中国感染控制杂志  2022, Vol. 21 Issue (12): 1215-1221   DOI: 10.12138/j.issn.1671-9638.20223178
0

引用本文 [复制中英文]

刘洁, 彭永正. 孕产妇生殖道无乳链球菌的血清型分布及耐药基因分析[J]. 中国感染控制杂志, 2022, 21(12): 1215-1221. DOI: 10.12138/j.issn.1671-9638.20223178.
[复制中文]
LIU Jie, PENG Yong-zheng. Serotype distribution and drug resistance genes of Streptococcus agalactiae isolated from the reproductive tract of pregnant women[J]. Chin J Infect Control, 2022, 21(12): 1215-1221. DOI: 10.12138/j.issn.1671-9638.20223178.
[复制英文]

作者简介

刘洁(1988-),女(汉族),吉林省扶余市人,主管技师,主要从事生殖免疫研究

通信作者

彭永正  E-mail: yzpeng1981@126.com

文章历史

收稿日期:2022-07-29
孕产妇生殖道无乳链球菌的血清型分布及耐药基因分析
刘洁1 , 彭永正1,2     
1. 南方医科大学珠江医院检验医学部, 广东 广州 510280;
2. 南方医科大学珠江医院输血科, 广东 广州 510280
摘要目的 了解孕产妇生殖道分离的无乳链球菌(GBS)血清型分布及耐药基因,为临床防治GBS感染和合理使用抗菌药物提供参考依据。方法 选择2020年1月-2021年6月入住某院妊娠晚期且生殖道分泌物检出GBS的孕产妇为研究对象,采用多重聚合酶链式反应(PCR)及基因测序的方法对分离培养的GBS进行基因分型及耐药基因检测。结果 共分离GBS 62株,GBS的血清型分别为Ⅲ型(30株,48.4%)、Ⅰa型(16株,25.8%)、Ⅰb型(8株,12.9%)、Ⅴ型(6株,9.7%)、Ⅵ型(2株,3.2%)。GBS药敏试验结果显示,GBS对四环素、红霉素、克林霉素有着较高的耐药性,耐药率分别为77.4%、71.0%、67.7%,对氨苄西林、青霉素G、喹奴普丁/达福普汀、利奈唑胺、万古霉素等均不耐药。GBS耐药菌株:四环素耐药基因tetM、tetO、tetL携带率分别为75.0%(36/48)、33.3%(16/48)、8.3%(4/48);红霉素耐药基因ermB、mefA/E、ermA、ermTR携带率分别为72.7%(32/44)、22.7%(10/44)、18.2%(8/44)、13.6%(6/44);克林霉素耐药基因linB携带率为42.9%(18/42)。GBS红霉素和克林霉素耐药表型主要以内在型(cMLSB)表型为主,占75.0%(36/48),主要由ermB(44.4%,16/36)、ermB+linB(27.8%,10/36)基因介导。结论 孕产妇生殖道GBS血清型以Ⅲ型最为常见,GBS对四环素、红霉素、克林霉素的耐药性较高,四环素耐药以tetM、tetO基因介导为主,红霉素耐药以ermB基因介导的cMLSB型为主,克林霉素耐药以linB基因介导为主。
关键词孕产妇    无乳链球菌    血清型    耐药性    耐药基因    
Serotype distribution and drug resistance genes of Streptococcus agalactiae isolated from the reproductive tract of pregnant women
LIU Jie1 , PENG Yong-zheng1,2     
1. Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China;
2. Department of Transfusion Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
Abstract: Objective To understand the serotype distribution and drug resistance genes of Streptococcus agalactis (group B streptococcus, GBS) isolated from the reproductive tract of pregnant women, and provide reference for the clinical prevention and treatment of GBS infection and rational use of antimicrobial agents. Methods Hospitalized women in late pregnancy with GBS detected in reproductive tract secretion from January 2020 to June 2021 were selected as research objects. Genotypes and drug resistance genes of isolated and cultured GBS were analyzed by polymerase chain reaction (PCR) and gene sequencing. Results A total of 62 GBS strains were isolated, serotypes of which were types Ⅲ (n=30, 48.4%), Ⅰa (n=16, 25.8%), Ⅰb (n=8, 12.9%), Ⅴ (n=6, 9.7%), and Ⅵ (n=2, 3.2%) respectively. GBS drug susceptibility test showed high resistance to tetracycline, erythromycin and clindamycin, with drug resistance rates of 77.4%, 71.0% and 67.7% respectively. There was no resistance to ampicillin, penicillin G, quinupristin/dalfopristin, linezolid, and vancomycin. The carrying rates of tetracycline resistance genes tetM, tetO and tetL in tetracycline resistant GBS strains were 75.0% (36/48), 33.3% (16/48) and 8.3% (4/48) respectively; carrying rates of erythromycin resistance genes ermB, mefA/E, ermA and ermTR were 72.7% (32/44), 22.7% (10/44), 18.2% (8/44) and 13.6% (6/44) respectively; carrying rate of clindamycin resistance gene linB was 42.9% (18/42). Erythromycin and clindamycin resistance phenotypes of GBS were mainly cMLSB (75.0%, 36/48), mostly mediated by ermB (44.4%, 16/36) and ermB+linB (27.8%, 10/36) genes. Conclusion Serotype Ⅲ is the most common GBS serotype in the reproductive tract of pregnant women. GBS is highly resistant to tetracycline, erythromycin and clindamycin. Tetracycline resistance is mainly mediated by tetM and tetO genes. Erythromycin resistance is mainly type cMLSB mediated by ermB gene, and clindamycin resistance is mainly mediated by linB gene.
Key words: pregnant woman    Streptococcus agalactis    serotype    drug resistance    drug resistance gene    

无乳链球菌(Streptococcus agalactiae,GBS)是孕产妇和新生儿感染的常见病原菌,主要定植在女性下消化道或泌尿生殖道。孕妇妊娠期间身体免疫力降低,母体易感染GBS,引起孕妇流产、早产、胎膜早破、羊膜炎及子宫内膜炎等一系列的妊娠并发症,并通过母婴垂直传播给新生儿,导致新生儿感染,引起新生儿肺炎、血流感染、脑膜炎等严重感染性疾病,甚至导致新生儿死亡[1-3]。近年来,随着抗菌药物的广泛使用,GBS对四环素、红霉素、克林霉素均有不同程度耐药[4],给临床抗感染治疗带来严峻挑战。本研究分析孕产妇生殖道GBS的血清型、耐药谱及耐药基因,为临床防治GBS感染提供参考依据。

1 对象与方法 1.1 研究对象

根据《预防围产期B族链球菌病(中国)专家共识》[5],选择2020年1月—2021年6月入住某院妊娠晚期且生殖道分泌物检出GBS的孕产妇为研究对象(n=62例),年龄20~38岁,孕周35~37周。排除习惯性流产、有其他明确感染因素、有严重妊娠并发症及内科疾病的孕妇。研究获得医院伦理委员会批准。

1.2 方法 1.2.1 标本采集

采用一次性无菌阴道拭子,在受检孕妇阴道下段1/3处旋转1周,收集阴道黏膜分泌物标本,置于无菌试管送检。

1.2.2 病原菌的分离培养、鉴定及药敏检测

按照第四版《全国临床检验操作规范》相关要求,阴道黏膜分泌物接种于血琼脂培养基,置于35℃,5% CO2培养箱中,培养24 h后采用VITEK 2 Compact微生物系统进行病原菌鉴定及药敏试验,药敏结果判定参照美国临床和实验室标准化协会(CLSI)2021年的药敏标准[6]

1.2.3 克林霉素诱导耐药性试验(D试验)

采用K-B纸片琼脂扩散法(K-B法)检测GBS大环内酯类的耐药表型,GBS对红霉素及克林霉素有4个耐药表型[7]:若病原菌对克林霉素和红霉素均表现为耐药,即为内在型(cMLSB)表型;若病原菌对红霉素耐药,且靠近红霉素纸片一侧的克林霉素纸片出现类似字母D的抑菌环,D试验为阳性,即为诱导型(iMLSB)表型;如果病原菌对红霉素敏感或中介,而对克林霉素耐药,即为L型表型;如果病原菌对克林霉素敏感,对红霉素耐药,即为M型表型。

1.2.4 GBS血清分型与耐药基因检测

使用QIAGEN DNA提取试剂盒提取GBS DNA,根据参考文献[8-9],设计GBS血清分型与耐药基因聚合酶链式反应(PCR)引物序列(见表 12)。参考Poyart等[8]基于GBS的cps基因差异性建立多重PCR方法,对GBS进行快速、准确地血清型分型。本研究的引物均由擎科生物公司合成,采用PCR扩增法检测GBS血清型与耐药基因,将PCR扩增产物送至擎科生物公司进行测序,并通过BLAST基因数据库进行序列比对分析。

表 1 GBS的血清型PCR引物序列 Table 1 PCR primer sequences of GBS serotypes

表 2 GBS的四环素、红霉素、克林霉素耐药基因PCR引物序列 Table 2 PCR primer sequences of tetracycline, erythromycin and clindamycin resistance genes in GBS
2 结果 2.1 GBS不同血清型分布

62株GBS共检出5个血清型,GBS血清型分别为Ⅲ型(30株,48.4%)、Ⅰ a型(16株,25.8%)、Ⅰ b型(8株,12.9%)、Ⅴ型(6株,9.7%)、Ⅵ型(2株,3.2%)。见图 1

注:M为DLl 000 Marker,Ⅲ、Ⅰ a、Ⅴ、Ⅰ b、Ⅵ为对应的血清型基因。 图 1 GBS血清分型PCR扩增产物电泳图 Figure 1 Electrophoresis map of PCR amplification products for GBS serotyping
2.2 GBS对常见抗菌药物的药敏结果

GBS对四环素、红霉素、克林霉素有较高的耐药性,耐药率分别为77.4%、71.0%、67.7%,对氨苄西林、青霉素、喹奴普丁/达福普汀、利奈唑胺、万古霉素敏感率为100%,未发现对常见抗菌药物中介的菌株。见表 3

表 3 62株GBS对常见抗菌药物的药敏结果[株(%)] Table 3 Drug susceptibility test results of 62 GBS strains to commonly used antimicrobial agents (No. of isolates[%])
2.3 GBS耐药菌株主要耐药基因检测结果

耐四环素GBS检出tetM 36株(75.0%)、tetO 16株(33.3%)、tetL 2株(4.2%),耐红霉素GBS检出ermB 32株(72.7%)、mefA/E 10株(22.7%)、ermA 8株(18.2%)、ermTR 6株(13.6%),耐克林霉素GBS检出linB 18株(42.9%)。见图 2

注:M为DL1 000 Marker,tetM、tetO、tetL、ermA、ermB、mefA/E、ermTR、linB为对应的耐药基因。 图 2 GBS耐药基因PCR扩增产物电泳图 Figure 2 Electrophoresis map of PCR amplification products for GBS drug resistance genes
2.4 GBS红霉素和克林霉素耐药表型

耐药表型主要以cMLSB表型为主,占75.0%,其次是M表型(占12.5%)、L表型(占8.3%)、iMLSB表型(占4.2%)。其中cMLSB表型主要由ermB(44.4%,16/36)基因、ermB+linB(27.8%,10/36)基因介导。见表 4

表 4 GBS红霉素和克林霉素耐药表型与基因型的关联 Table 4 Correlation between erythromycin and clindamycin resistance phenotypes and genotypes of GBS
2.5 GBS不同血清分型中不同抗菌药物耐药基因情况

Ⅲ型血清型携带的耐药基因主要为ermB (66.7%)、tetM(46.7%)、linB(46.7%)、tetO(40.0%),Ⅰ a血清型携带的耐药基因主要为tetM(75.0%),Ⅰ b血清型携带的耐药基因主要为ermB(75.0%),Ⅴ血清型携带的耐药基因主要为tetM(100%),Ⅵ血清型携带的耐药基因主要为tetM(100%)。见表 5

表 5 GBS不同血清分型中不同抗菌药物耐药基因检出情况 Table 5 Detection results of antimicrobial resistance genes in different GBS serotypes
3 讨论

GBS是围产期感染的常见病原菌,常定植在女性下消化道或泌尿生殖道。GBS可以通过产道扩散感染子宫,引起子宫内膜炎和血流感染,并且具有一定的垂直传播率,可以引发早产、胎儿窒息和新生儿严重的感染性疾病[1-3]。近年来,关于GBS引起新生儿感染的报道屡见不鲜,GBS造成的母婴感染逐渐受到医学界关注,成为国内引起孕妇及婴儿感染的重要病原菌。因此,了解GBS血清型、耐药谱及耐药基因,有助于预防和治疗母婴GBS感染。

GBS表面的荚膜多糖是其重要的毒力因子,还可以作为血清学分类的主要依据。因此,了解GBS血清型对确定其致病性非常重要[10]。按GBS上荚膜多糖类型可分为Ⅰ a、Ⅰ b、Ⅱ~Ⅸ等10种血清型,其中5种(Ⅰ a、Ⅰ b、Ⅱ、Ⅲ和Ⅴ) 是GBS的主要类型[11]。本研究根据分子血清分型检出5种血清型(Ⅰ a、Ⅰ b、Ⅲ、Ⅴ、Ⅵ),主要为Ⅲ、Ⅰ b、Ⅰ a(87.1%)血清型,与国内报道[12]的血清型分布和占比(93.0%)基本一致。其他研究[13-14]中不同地区的主要血清型,如巴西Ⅰ a、Ⅱ、Ⅰ b血清型(65.4%)与加拿大Ⅲ、Ⅰ a、Ⅰ b、Ⅱ、Ⅴ、Ⅳ血清型(92.9%),与本研究血清型分布不同。因此,由于不同国家的地域性差异、研究对象的个体特征不同,GBS的血清型分布也存在着空间以及人群差异。报告[15]显示,Ⅲ型血清型在新生儿感染病例中检出更多,其致病性也较其他血清型强。本研究Ⅲ型血清型高达48.4%,应予以重视。GBS的荚膜多糖(CPS)不仅是血清分型的基础,也是疫苗研究的重要靶点。疫苗是预防GBS感染最有效的方式,了解GBS血清型分布对开发基于CPS的多价疫苗至关重要。

根据美国GBS医疗指导方针,GBS对大多数β-内酰胺类抗生素敏感,青霉素是治疗GBS感染的首选药物[5]。本研究显示,GBS对氨苄西林、青霉素的敏感率为100%,故二者可以作为治疗GBS感染的一线用药,但需注意过敏反应。克林霉素与红霉素曾被广泛作为治疗GBS感染的二线用药,然而GBS对克林霉素与红霉素的耐药率逐渐上升,已引起世界范围内的关注,且我国报道的耐药率高于国外相关报道[4, 16]。本研究中GBS对克林霉素和红霉素具有高度耐药性,耐药率分别为67.7%、71.0%,建议临床对两者的用药予以重新评价;对四环素的耐药率最高,为77.4%,临床应予以重视。虽然未检测到奎奴普丁/达福普汀、利奈唑胺、万古霉素的耐药菌株,但万古霉素具肝肾毒性,在孕产妇中的使用受到限制,而奎奴普丁/达福普汀及利奈唑胺也不适用于孕产妇的抗感染治疗。因此,针对GBS感染,青霉素可作为一线用药,对青霉素过敏者要做药敏试验,并根据试验结果选择适当抗菌药物,以达到及时、有效的临床疗效。

本研究GBS耐药谱表明,GBS对红霉素、克林霉素、四环素具有不同程度的耐药性。ermA、ermB、ermTR和mefA/E是红霉素耐药基因。erm基因编码的甲基化酶引起核糖体构型改变,使作用于抗菌药物的结合靶位点发生改变,阻碍GBS与红霉素的结合。mef基因编码外排蛋白使病原菌主动将红霉素泵出菌体外,从而产生耐药[17]。本研究显示,对红霉素耐药的GBS菌株主要耐药基因为ermB(72.7%),提示ermB基因介导的耐药机制可能在GBS耐药中起主导作用。GBS主要耐药表型为cMLSB(75.0%),与国内外近年来的研究数据基本一致[17-18]。分析cMLSB表型的耐药基因,发现以ermB基因为主。tetM、tetO、tetL和tetK为四环素耐药基因,tetM和tetO编码核糖体保护蛋白,使四环素无法与细菌核糖体结合;tetK和tetL编码外排蛋白,从而产生四环素耐药[19]。本研究中四环素耐药主要由tetM、tetO介导,携带率分别为75.0%、33.3%。克林霉素耐药由编码林可酰胺核苷酸转移酶的linB基因介导,本研究中linB携带率为42.9%。此外,64.5%的GBS同时携带红霉素和四环素耐药基因,主要为ermB和tetM,多种耐药基因的出现可能与耐药基因的水平转移有关。本研究还发现,GBS菌株中存在特定的血清型-耐药基因组合,其中Ⅲ型血清型与ermB基因有关,Ⅰa血清型与tetM基因有关。Ⅲ型血清型与新生儿重症感染密切相关,因此研究血清Ⅲ型GBS的耐药机制更有临床意义。

综上所述,GBS血清型主要以Ⅲ型为主,GBS对四环素、红霉素、克林霉素有着较高的耐药性,四环素耐药以tetM、tetO基因介导为主,红霉素耐药以ermB基因介导的cMLSB型为主,克林霉素耐药以linB基因介导为主。因此,加强对GBS流行病学的监测,有助于更好地了解GBS耐药流行株的发生及传播规律,有助于临床制订防治方案,对预防和控制耐药株的产生极为重要。

利益冲突:所有作者均声明不存在利益冲突。

参考文献
[1]
Lin C, Chu SM, Wang HC, et al. Complicated Streptococcus agalactiae sepsis with/without meningitis in young infants and newborns: the clinical and molecular characteristics and outcomes[J]. Microorganisms, 2021, 9(10): 2094. DOI:10.3390/microorganisms9102094
[2]
Nanduri SA, Petit S, Smelser C, et al. Epidemiology of invasive early-onset and late-onset group B streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance[J]. JAMA Pediatr, 2019, 173(3): 224-233. DOI:10.1001/jamapediatrics.2018.4826
[3]
覃德明, 胡龙华. B族链球菌在围产期妇女的情况和血清型分型研究进展[J]. 实验与检验医学, 2021, 39(5): 1318-1322.
Qin DM, Hu LH. Progress in the study of the status and serotyping of group B streptococci in perinatal women[J]. Experimental and Laboratory Medicine, 2021, 39(5): 1318-1322. DOI:10.3969/j.issn.1674-1129.2021.05.079
[4]
Oppegaard O, Skrede S, Mylvaganam H, et al. Emerging threat of antimicrobial resistance in β-hemolytic streptococci[J]. Front Microbiol, 2020, 11: 797. DOI:10.3389/fmicb.2020.00797
[5]
中华医学会围产医学分会, 中华医学会妇产科学分会产科学组. 预防围产期B族链球菌病(中国)专家共识[J]. 中华围产医学杂志, 2021, 24(8): 561-566.
Perinatal Medicine Branch of the Chinese Medical Association, Obstetrics and Gynecology Section of the Chinese Medical Association. Chinese experts consensus on prevention of perinatal group B streptococcal disease[J]. Chinese Journal of Perinatal Medicine, 2021, 24(8): 561-566. DOI:10.3760/cma.j.cn113903-20210716-00638
[6]
Clinical and Laboratory Standards Institute. CLSI publishes M100—performance standards for antimicrobial susceptibility testing, 31st edition[EB/OL]. (2021-03-29)[2022-07-20]. https://clsi.org/about/press-releases/clsi-publishes-m100-performance-standards-for-antimicrobial-susceptibility-testing-31st-edition/.
[7]
李娟, 高坎坎, 容莉莉, 等. 新生儿侵袭性感染B族链球菌的耐药表型及耐药机制[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(1): 20-27.
Li J, Gao KK, Rong LL, et al. Resistance patterns and mechanism of group B Streptococcus isolated from infants with invasive disease[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2018, 12(1): 20-27. DOI:10.3877/cma.j.issn.1674-1358.2018.01.005
[8]
Poyart C, Tazi A, Réglier-Poupet H, et al. Multiplex PCR assay for rapid and accurate capsular typing of group B streptococci[J]. J Clin Microbiol, 2007, 45(6): 1985-1988. DOI:10.1128/JCM.00159-07
[9]
Bolukaoto JY, Monyama CM, Chukwu MO, et al. Antibiotic resistance of Streptococcus agalactiae isolated from pregnant women in Garankuwa, South Africa[J]. BMC Res Notes, 2015, 8: 364. DOI:10.1186/s13104-015-1328-0
[10]
Mukesi M, Iweriebor BC, Obi LC, et al. Prevalence and capsular type distribution of Streptococcus agalactiae isolated from pregnant women in Namibia and South Africa[J]. BMC Infect Dis, 2019, 19(1): 179. DOI:10.1186/s12879-019-3809-6
[11]
Shabayek S, Spellerberg B. Group B streptococcal colonization, molecular characteristics, and epidemiology[J]. Front Microbiol, 2018, 9: 437. DOI:10.3389/fmicb.2018.00437
[12]
Cheng ZM, Qu PH, Ke PF, et al. Antibiotic resistance and molecular epidemiological characteristics of Streptococcus agalactiae isolated from pregnant women in Guangzhou, South China[J]. Can J Infect Dis Med Microbiol, 2020, 2020: 1368942.
[13]
do Nascimento CS, Dos Santos NFB, Ferreira RCC, et al. Streptococcus agalactiae in pregnant women in Brazil: prevalence, serotypes, and antibiotic resistance[J]. Braz J Micro-biol, 2019, 50(4): 943-952. DOI:10.1007/s42770-019-00129-8
[14]
Ma A, Thompson LA, Corsiatto T, et al. Epidemiological characterization of group B Streptococcus infections in Alberta, Canada: an update from 2014 to 2020[J]. Microbiol Spectr, 2021, 9(3): e0128321. DOI:10.1128/Spectrum.01283-21
[15]
Wu BQ, Su JZ, Li L, et al. Phenotypic and genetic differences among group B Streptococcus recovered from neonates and pregnant women in Shenzhen, China: 8-year study[J]. BMC Microbiol, 2019, 19(1): 185. DOI:10.1186/s12866-019-1551-2
[16]
陈华, 俞萍, 张吉平, 等. 围生期妇女生殖道感染B族链球菌耐药基因及毒力基因分析[J]. 中华医院感染学杂志, 2021, 31(12): 1916-1920.
Chen H, Yu P, Zhang JP, et al. Analysis of resistance genes and virulence genes of group B Streptococcus in the perinatal women with reproductive tract infection[J]. Chinese Journal of Nosocomiology, 2021, 31(12): 1916-1920.
[17]
Motallebirad T, Fazeli H, Azadi D, et al. Determination of capsular serotypes, antibiotic susceptibility pattern, and molecular mechanism of erythromycin resistance among clinical isolates of group B Streptococcus in Isfahan, Iran[J]. Adv Biomed Res, 2021, 10: 27. DOI:10.4103/abr.abr_269_20
[18]
Guo HW, Fu MZ, Peng Q, et al. Antimicrobial resistance and molecular characterization of Streptococcus agalactiae from pregnant women in southern China[J]. J Infect Dev Ctries, 2019, 13(9): 802-809. DOI:10.3855/jidc.11395
[19]
Gizachew M, Tiruneh M, Moges F, et al. Molecular characterization of Streptococcus agalactiae isolated from pregnant women and newborns at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia[J]. BMC Infect Dis, 2020, 20(1): 35. DOI:10.1186/s12879-020-4776-7