Antimicrobial susceptibility and molecular characterization of Streptococcus agalactiae in pregnant women with advanced maternal age in Tangshan City
-
摘要:
目的 分析唐山地区高龄孕妇携带的无乳链球菌药物敏感性、分子型别、血清型别、毒力因子和耐药机制,为无乳链球菌相关感染的治疗和防控提供基础数据。 方法 从华北理工大学附属医院和唐山市妇幼保健院收集42株高龄孕妇携带的无乳链球菌,进行13种抗菌药物的药物敏感性检测和基因组序列测定。 结果 对四环素、红霉素、左氧氟沙星和氯霉素同时耐药的菌株占比达7.1%,35.7%的菌株呈现对红霉素、克林霉素和左氧氟沙星的多重耐药。耐药基因ermB、tetM的携带率分别为66.7%、47.6%,29株菌(69.0%)同时发生了gyrA和parC氟喹诺酮耐药决定簇的基因突变。42株无乳链球菌属于4种血清型,分别为Ⅰ B(35.7%)、Ⅲ(33.3%)、Ⅴ(26.2%)、Ⅰ A(4.8%);分属11个序列型(STs),占比最多的为ST10(35.7%)和ST19(31.0%);分属6个克隆复合体(CCs),其中占比最多的为CC19(42.9%)和CC12(35.7%)。所有无乳链球菌均携带毒力因子编码基因cfb、cylE和pavA。 结论 唐山地区高龄孕妇携带的无乳链球菌分子型别、血清型别呈现多态性,多重耐药特征明显,携带多种类型的耐药基因和毒力基因。 Abstract:Objective To analyze the antimicrobial susceptibility, molecular types, serotypes, virulence factors and resistance mechanisms of Streptococcus agalactiae (S. agalactiae) isolated from pregnant women with advanced maternal age in Tangshan City, and provide basic data for the treatment, prevention and control of S. agalactiae infection. Methods 42 strains of S. agalactiae isolated from pregnant women with advanced maternal age in North China University of Science and Technology Affiliated Hospital as well as Tangshan Maternal and Child Health Hospital were collected. Detection of antimicrobial susceptibility and whole genome sequencing of 13 antimicrobial agents were performed. Results The percentage of tetracycline, erythromycin, levofloxacin, and chloramphenicol concurrently resistant strains was 7.1%, 35.7% of the strains presented multidrug resistance to erythromycin, clindamycin, and levofloxacin. The carriage rates of resistance genes ermB and tetM were 66.7% and 47.6%, respectively. 29 strains (69.0%) exhibited mutations in both gyrA and parC fluoroquinolone resistance determinants. 42 strains of S. agalactiae belonged to 4 serotypes, namely Ⅰ B (35.7%), Ⅲ (33.3%), Ⅴ (26.2%), and Ⅰ A (4.8%); and 11 sequence types (STs), with the highest proportion being ST10 (35.7%) and ST19 (31.0%); as well as 6 clonal complexes (CCs), among which CC19 (42.9%) and CC12 (35.7%) had the highest proportion. All S. agalactiae carried virulence factor-encoding genes of cfb, cylE, and pavA. Conclusion The molecular types and serotypes of S. agalactiae carried by pregnant women with advanced maternal age in Tangshan City present polymorphism, with obvious multidrug resistance, and carry multiple types of drug resistance genes and virulence genes. -
无乳链球菌(Streptococcus agalactiae)属于革兰阳性链球菌,拥有较小的β溶血环,多定植于人体的泌尿生殖道与胃肠道,可引起血流感染、脑膜炎和心内膜炎等疾病[1]。无乳链球菌通过母体垂直感染可引起胎儿和新生儿的败血症、肺炎、脑膜炎等相关疾病,是全球新生儿感染和死亡的主要原因之一[2-3]。
相比于正常孕龄孕妇,≥35岁的孕妇,即高龄孕妇的子宫环境及各项身体机能都欠佳[4-5],高龄孕妇罹患产科并发症和围生期不良结局的风险都会增加,包括妊娠期糖尿病、高血压疾病、早产、死胎等[6],并且相关分泌物的病原菌构成不同,耐药性也有所不同[7-8],而高龄本身就是孕妇感染无乳链球菌的独立危险因素[9]。本研究旨在通过耐药表型与全基因组分析探讨唐山地区高龄孕妇携带的无乳链球菌耐药性特征与耐药机制、毒力因子的携带分布与分子分型特征,为临床有效控制和预防高龄孕妇无乳链球菌感染提供依据。
1. 对象与方法
1.1 研究对象
收集来自河北省唐山市华北理工大学附属医院及河北省唐山市妇幼保健院≥35岁孕妇阴道分泌物拭子的无乳链球菌疑似菌株共42株,剔除同一患者的重复菌株。所有疑似菌株经分纯转种于哥伦比亚型增菌培养基(OXOID,PB0123A),并在35~37℃、5% CO2培养箱中培养18~24 h[10],经革兰染色、菌落形态、CAMP试验的阳性初筛后,进一步使用梅里埃Vitek® 2 Compact全自动细菌及药敏分析系统鉴定,确认42株疑似菌株均为无乳链球菌。
1.2 抗菌药物敏感性检测
使用全自动微生物鉴定药敏分析仪BD PhoenixTM M50完成对10类13种抗菌药物的敏感性检测,包括青霉素类(青霉素、氨苄西林)、头孢菌素类(头孢噻肟、头孢吡肟)、
唑烷酮类(利奈唑胺)、多肽类(万古霉素)、链阳菌素类(奎奴普丁/达福普汀)、林可霉素类(克林霉素)、大环内酯类(红霉素)、氟喹诺酮类(左氧氟沙星)、四环素类(四环素、替加环素)、氯霉素类(氯霉素)。肺炎链球菌ATCC 49619作为质量控制菌株。基于美国临床实验室标准化协会(CLSI)-M100-S23文件进行药物敏感性判读。多重耐药菌(multidrug-resistant organism, MDRO)判定标准为对3类或3类以上抗菌药物同时呈现耐药。1.3 菌株的全基因组数据分析
使用Wizard®基因组DNA纯化试剂盒(Wizard® Genomic DNA Purification Kit)对42株无乳链球菌株进行核酸提取,在Illumina Hiseq 2000平台进行双末端测序得到原始基因组数据(Raw Data),将原始基因组数据通过EDATABOX生物计算工业一体机进行过滤获得有效数据(clean data),拼接后以FASTA文件格式存储。基于基因组流行病学中心的耐药基因数据库ResFinder(https://cge.food.dtu.dk/services/ResFinder/)、致病菌毒力因子数据库(virulence factors of pathogenic bacteria, VFDB)与血清型相关文献及数据库[11-12]确定菌株耐药基因、毒力因子和血清型的分布。根据无乳链球菌的7个管家基因adhP、pheS、atr、glnA、sdhA、glcK和tkt[13]的等位基因位点变异明确特异的多位点序列分型(MLST)的序列型(STs),并进一步确定菌株的克隆复合体(CCs)。未被分配ST型别的菌株,将其基因组文件上传至PubMLST数据库网站(https://pubmlst.org/)获取新ST型。采用卡方检验验证各个CCs所拥有耐药基因和毒力因子及其编码基因的差异,P≤0.05为差异具有统计学意义。
2. 结果
2.1 药敏结果
42株无乳链球菌对10类13种抗菌药物的药敏试验结果显示,所有菌株对青霉素、氨苄西林、头孢噻肟、头孢吡肟、利奈唑胺、万古霉素、替加环素敏感;对红霉素、克林霉素、左氧氟沙星、四环素的耐药率分别为88.1%(37株)、66.7%(28株)、76.2%(29株)、64.3%(27株),对氯霉素的耐药率为7.1%(3株)。所有菌株呈现9种耐药模式,其中占比最多的是红霉素+克林霉素+左氧氟沙星的多重耐药模式,占比为35.7%(15株),其他耐药及多重耐药模式见表 1。
表 1 42株高龄孕妇携带的无乳链球菌耐药谱分布Table 1 Distribution of resistance patterns of 42 strains of S. agalactiae from advanced maternal age pregnant women序号 耐药谱 MDRO 抗菌药物种类数量 株数(%) 1 四环素 否 1 2(4.8) 2 四环素+克林霉素 否 2 1(2.4) 3 四环素+红霉素 否 2 2(4.8) 4 四环素+左氧氟沙星 否 2 2(4.8) 5 四环素+红霉素+左氧氟沙星 是 3 2(4.8) 6 四环素+红霉素+氯霉素 是 3 3(7.1) 7 四环素+红霉素+克林霉素 是 3 5(11.9) 8 红霉素+克林霉素+左氧氟沙星 是 3 15(35.7) 9 四环素+克林霉素+红霉素+左氧氟沙星 是 4 7(16.6) 10 四环素+红霉素+左氧氟沙星+氯霉素 是 4 3(7.1) 2.2 荚膜血清型、STs和CCs的相关分布
细菌基因组数据分析显示,42株无乳链球菌属于4种血清型,分别为Ⅰ B(15株,35.7%)、Ⅲ (14株,33.3%)、Ⅴ(11株,26.2%)、Ⅰ A(2株,4.8%)。菌株MLST型别多样,40株分属于9个已知ST型别,2株菌株为新的ST型别,提交PubMLST后分别被命名为ST1969、ST1976。11个STs,占比最多的为ST10(15株,35.7%),其次是ST19(13株,31.0%);6个CCs,其中占比最多的为CC19(18株,42.9%),其次为CC12(15株,35.7%)。CCs、STs与血清型存有一定的对应关系,CC12菌株均为血清型Ⅰ B,CC19菌株为血清型Ⅲ和Ⅴ;ST23属于CC23,血清型均为Ⅰ A(仅在ST23);ST24和ST890同属CC23,血清型均为Ⅴ。MLST聚类与血清型分布见图 1。
2.3 耐药基因、毒力因子及相关编码基因的携带情况
42株无乳链球菌共检出15种耐药基因,可介导对大环内酯类、林可酰胺类、四环素类、氯霉素类、氨基糖苷类药物的耐受,包括大环内酯类和林可霉素类耐药基因ermA、ermB、mreA、mefA、msrD、lunB、lsaE和lsaC;四环素类耐药基因tetM、tetO和tetS;氯霉素耐药基因catQ;氨基糖苷类耐药基因ant(6)-Ⅰ a、aph(3’)-Ⅲ和aac(6’)-aph(2’ ’)。其中携带率最高的3个耐药基因为mreA(42株,100%)、ermB(28株,66.7%)和tetM(20株,47.6%)。29株(69.0%)无乳链球菌同时发生了gyrA和parC氟喹诺酮耐药决定簇的基因突变。所有无乳链球菌均携带毒力基因cfb、cylE、pavA和至少一种菌毛岛蛋白(Pili-island, PI)基因,其次携带率较高的毒力基因为lmb(40株,95.2%)和毒力蛋白Srr1(29株,69.0%)。仅1株菌检出毒力因子编码基因scpB。见图 2。
2.4 不同CCs菌株耐药基因和毒力因子的携带状况
在CC12中,gyrA和parC喹诺酮耐药决定簇突变的发生率为100%,毒力因子Alpha的携带率为100%,远高于其他CCs的菌株(P<0.001);CC17中耐药基因tetO携带率为100%,高于其他CCs的菌株(P<0.001);除CC12外,CC19中gyrA和parC喹诺酮耐药决定簇突变的发生率高于其他CCs的菌株(P<0.001);CC23中耐药基因lsaC携带率为40.0%,高于其他CCs的菌株(P<0.001);CC651中耐药基因tetS和毒力因子ALP1携带率为100%,高于其他CCs的菌株(P<0.001)。
3. 讨论
相较于年轻孕妇而言,高龄孕妇妊娠并发症发生率高,早产率也更高,给孕妇与新生儿带来更高的感染风险,预后也更差[5, 14-15]。《预防围产期B族链球菌病(中国)专家共识》建议对在35~37周筛查出无乳链球菌的产妇,在围生期进行产时抗菌药物治疗(intrapartum antibiotic chemoprophylaxis, IAP),能够显著降低母婴侵袭性无乳链球菌感染的发生率,改善母婴结局[3]。青霉素是预防和治疗无乳链球菌感染的首选药物。对于对青霉素严重过敏的患者,克林霉素是最主要的治疗药物,红霉素因不能够很好地透过胎盘,适应证受到一定的限制,存在一定的使用缺陷[16]。对红霉素、克林霉素耐药的无乳链球菌的抗感染治疗则可申请使用万古霉素[10]。
本研究对42株高龄孕妇携带的无乳链球菌进行药敏试验,结果显示对克林霉素、红霉素、左氧氟沙星、四环素和氯霉素存在不同程度的耐药,尤其以对红霉素和克林霉素耐药的菌株数最多,这给对青霉素严重过敏患者的治疗带来了极大挑战。MRDO一直被临床重视,本研究中菌株涉及的多重耐药模式有5种,其中对红霉素、克林霉素、左氧氟沙星耐药的MRDO占比高达35.7%。澳大利亚一项研究发现,在100株无乳链球菌中克林霉素和红霉素的共同耐药率为32%[17];伊朗一项研究中无乳链球菌的多重耐药率约为22%[18]。本研究中无乳链球菌对克林霉素和红霉素的耐药程度高于其他国家和地区,建议我国应高度关注无乳链球菌对二线药物耐药和多重耐药的情况。
本研究中,mreA基因编码的药物外排泵(100%)和erm家族基因(71.4%)编码的核糖体甲基化修饰是导致无乳链球菌对克林霉素和红霉素耐药的主要机制。除此之外,相比于其他CCs,本研究中CC23菌株中lsaC的检出率高(P<0.001),提示lsaC可能是CC23菌株对克林霉素耐受的最主要分子机制之一。lsa家族基因编码的ABC转运蛋白可将抗菌药物排出细菌外[19],应关注lsaC编码的转运蛋白对抗菌药物外排作用导致的菌株药物敏感性降低。
本研究中,所有对左氧氟沙星耐药的菌株均为CC12和CC19 CCs菌株,且都同时存在gyrA基因编码的DNA促旋酶81位(Ser-81-Leu)和parC基因编码的拓扑异构酶Ⅳ 79位(Ser-79-Phe or Tyr)的改变,提示DNA促旋酶81位和拓扑异构酶Ⅳ 79位联合突变的CC12和CC19克隆菌株在唐山高龄孕妇阴道中定植并传播,应高度警惕其对喹诺酮药物的高耐受和对临床抗感染治疗的挑战[20]。
无乳链球菌对氯霉素的耐药机制多为cat家族基因编码的不同氯霉素乙酰转移酶,使药物失活[21]。有学者发现,对氯霉素耐药的无乳链球菌通常也对左氧氟沙星耐药,它们之间是否有联系尚未可知[22]。本研究中3株无乳链球菌对氯霉素耐药,3株菌均携带cat基因且同时对左氧氟沙星耐药,提示氯霉素相关耐药基因与左氧氟沙星耐药性之间的联系需要进一步研究。
近年研究[23]提示,四环素的大量使用产生了耐药CCs,这可能是导致新生儿无乳链球菌感染率增加的重要因素。本研究结果显示,四环素相关耐药基因均编码核糖体保护蛋白,介导对药物靶点的保护,但不同CCs携带的核糖体保护蛋白的类型不同,如tetS只出现在CC651中(P<0.001),提示尽管菌株都呈现出对四环素类药物的耐药性,但不同CCs的菌株其耐药机制具有多样性。
本研究检出的氨基糖苷类耐药基因可以编码核苷酸转移酶、磷酸转移酶和乙酰转移酶,并导致氨基糖苷类药物失去活性。对于严重的侵袭性无乳链球菌感染,如感染性心内膜炎和假体周围关节感染,有学者建议采用青霉素和庆大霉素的联合治疗,但因其肾毒性与预后差,临床并不常采用[19]。
无乳链球菌的荚膜作为重要的毒力因子之一,不仅可抵抗人体免疫细胞的调理吞噬,也会抑制中性粒细胞和巨噬细胞的活化[24]。根据每个重复多糖单元内单糖特定排列赋予其特异性,最终分为10种荚膜血清型(Ⅰ A、Ⅰ B、Ⅱ-Ⅰ X)。本研究菌株中检测到4种荚膜血清型,占比从高到低依次为Ⅰ B、Ⅲ、Ⅴ和Ⅰ A,揭示了唐山地区高龄孕妇携带的无乳链球菌的血清型分布。
毒力基因cfb、cylE、pavA、lmb,毒力因子Srr1和菌毛(Pili)均会导致细菌对人体的侵袭损伤并增强其穿透人体黏膜屏障,扩散到其他人体组织引发感染的能力[25-27]。本研究中高龄孕妇来源的无乳链球菌与婴幼儿和普通成人来源的无乳链球菌携带cfb、cylE、pavA、lmb和菌毛的比例接近[28-29],携带率均很高,而且在所有CCs中都广泛携带。一项对骨关节感染无乳链球菌的研究发现,除CC17外,拥有Srr1的无乳链球菌在所有CCs中都有所分布,Srr2仅在CC17的无乳链球菌中出现[30]。本研究中Srr2仅在CC23的无乳链球菌中出现。不同人群分离的无乳链球菌Srr2是否有差异有待进一步研究。
无乳链球菌超强毒力黏附素(hypervirulent GBS adhesin, HvgA)与新生儿脑膜炎密切相关,可增强细菌对构成血脑屏障(blood-brain barrier, BBB)的肠上皮细胞、脉络膜上皮细胞和微血管内皮细胞的黏附能力[26]。本研究中,1株菌(2.4%)携带HvgA,提示高龄孕妇携带的无乳链球菌具有导致新生儿脑膜炎风险。与年轻孕妇群体相比,高龄孕妇群体生育能力明显下降[31],HvgA的存在可能会加重高龄孕妇的感染,导致更差的预后[32]。
ALP家族蛋白(ALP family proteins)包括Alpha、ALP-1、ALP2-3、ALP-4和Rib,可以增强无乳链球菌的免疫逃逸作用[11, 33]。本研究结果显示毒力因子Alpha多出现在CC12与CC19中,ALP1多出现在CC19中,高于其他CCs(P<0.001)。高龄孕妇来源的无乳链球菌ALP家族蛋白具有种群多样性,不同CCs菌株携带的ALP蛋白不同,提示菌株与宿主免疫系统可能存在复杂的相互作用。
综上所述,唐山地区高龄孕妇携带的无乳链球菌分子型别、血清型别呈现多态性,多重耐药特征明显,菌株携带多种类型的耐药基因和毒力基因。本研究将为临床与公共卫生系统对无乳链球菌的治疗与控制提供基础数据,以促进新的治疗方法、预防策略的产生。
利益冲突:所有作者均声明不存在利益冲突。
-
表 1 42株高龄孕妇携带的无乳链球菌耐药谱分布
Table 1 Distribution of resistance patterns of 42 strains of S. agalactiae from advanced maternal age pregnant women
序号 耐药谱 MDRO 抗菌药物种类数量 株数(%) 1 四环素 否 1 2(4.8) 2 四环素+克林霉素 否 2 1(2.4) 3 四环素+红霉素 否 2 2(4.8) 4 四环素+左氧氟沙星 否 2 2(4.8) 5 四环素+红霉素+左氧氟沙星 是 3 2(4.8) 6 四环素+红霉素+氯霉素 是 3 3(7.1) 7 四环素+红霉素+克林霉素 是 3 5(11.9) 8 红霉素+克林霉素+左氧氟沙星 是 3 15(35.7) 9 四环素+克林霉素+红霉素+左氧氟沙星 是 4 7(16.6) 10 四环素+红霉素+左氧氟沙星+氯霉素 是 4 3(7.1) -
[1] Khademi F, Sahebkar A. Group B Streptococcus drug resistance in pregnant women in Iran: a Meta-analysis[J]. Taiwan J Obstet Gynecol, 2020, 59(5): 635-642. doi: 10.1016/j.tjog.2020.07.002 [2] Madrid L, Seale AC, Kohli-Lynch M, et al. Infant group B streptococcal disease incidence and serotypes worldwide: systematic review and Meta-analyses[J]. Clin Infect Dis, 2017, 65(Suppl 2): S160-S172. [3] 中华医学会围产医学分会, 中华医学会妇产科学分会产科学组. 预防围产期B族链球菌病(中国)专家共识[J]. 中华围产医学杂志, 2021, 24(8): 561-566. doi: 10.3760/cma.j.cn113903-20210716-00638 Society of Perinatal Medicine of Chinese Medical Association, Obstetrics Subgroup of Society of Obstetrics and Gynecology of Chinese Medical Association. Chinese experts consensus on prevention of perinatal Group B Streptococcal disease[J]. Chinese Journal of Perinatal Medicine, 2021, 24(8): 561-566. doi: 10.3760/cma.j.cn113903-20210716-00638 [4] 张琴芳, 董丽华, 沈叶琴. 不同分娩方式高危产妇产褥期感染的妊娠结局和危险因素[J]. 中国妇幼保健, 2021, 36(11): 2609-2612. Zhang QF, Dong LH, Shen YQ. Pregnancy outcomes and risk factors for puerperal infections in high-risk women with different modes of delivery[J]. Maternal & Child Health Care of China, 2021, 36(11): 2609-2612. [5] Wu YL, Chen Y, Shen MX, et al. Adverse maternal and neonatal outcomes among singleton pregnancies in women of very advanced maternal age: a retrospective cohort study[J]. BMC Pregnancy Childbirth, 2019, 19(1): 3. doi: 10.1186/s12884-018-2147-9 [6] Khalil A, Syngelaki A, Maiz N, et al. Maternal age and adverse pregnancy outcome: a cohort study[J]. Ultrasound Obstet Gynecol, 2013, 42(6): 634-643. doi: 10.1002/uog.12494 [7] Karasneh RA, Migdady FH, Alzoubi KH, et al. Trends in maternal characteristics, and maternal and neonatal outcomes of women with gestational diabetes: a study from Jordan[J]. Ann Med Surg (Lond), 2021, 67: 102469. [8] 严红莉, 陈捷, 黄伟萍. 胎膜早破高龄孕妇175例宫颈分泌物细菌培养及耐药性分析[J]. 中国乡村医药, 2015, 22(1): 59-60. Yan HL, Chen J, Huang WP. Analysis of bacterial culture and antimicrobial susceptibility of cervical secretions in 175 cases of pregnant women with premature rupture of membranes in advanced age[J]. Chinese Journal of Rural Medicine and Pharmacy, 2015, 22(1): 59-60. [9] 林文静, 温高静, 黄志琼, 等. 妊娠晚期B族链球菌感染孕妇血清细胞因子水平、相关危险因素及妊娠结局分析[J]. 中国计划生育学杂志, 2020, 28(9): 1482-1485. Lin WJ, Wen GJ, Huang ZQ, et al. Analysis of serum cytokine level, related risk factors, and pregnancy outcomes of pregnant women with Group B Streptococcus infection during the third trimester of pregnancy[J]. Chinese Journal of Family Planning, 2020, 28(9): 1482-1485. [10] Verani JR, McGee L, Schrag SJ, et al. Prevention of perinatal group B streptococcal disease-revised guidelines from CDC, 2010[J]. MMWR Recomm Rep, 2010, 59(RR/10): 1-36. [11] McGee L, Chochua S, Li ZY, et al. Multistate, population-based distributions of candidate vaccine targets, clonal complexes, and resistance features of invasive Group B Streptococci within the United States, 2015-2017[J]. Clin Infect Dis, 2021, 72(6): 1004-1013. doi: 10.1093/cid/ciaa151 [12] Metcalf BJ, Chochua S, Gertz RE Jr, et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA[J]. Clin Microbiol Infect, 2017, 23(8): 574. e7-574. e14. doi: 10.1016/j.cmi.2017.02.021 [13] Jones N, Bohnsack JF, Takahashi S, et al. Multilocus sequence typing system for Group B Streptococcus[J]. J Clin Microbiol, 2003, 41(6): 2530-2536. doi: 10.1128/JCM.41.6.2530-2536.2003 [14] Zhang MY, Wang YX, Qi XY. Effect of very advanced maternal age on pregnant women and fetuses[J]. J Coll Physicians Surg Pak, 2021, 31(5): 542-545. doi: 10.29271/jcpsp.2021.05.542 [15] Sydsjö G, Lindell Pettersson M, Bladh M, et al. Evaluation of risk factors' importance on adverse pregnancy and neonatal outcomes in women aged 40 years or older[J]. BMC Pregnancy Childbirth, 2019, 19(1): 92. doi: 10.1186/s12884-019-2239-1 [16] No authors listed. Prevention of Group B streptococcal early-onset disease in newborns[J]. Pediatrics, 2019, 144(2): e51-e72. [17] Jones S, Newton P, Payne M, et al. Epidemiology, antimicrobial resistance, and virulence determinants of Group B Streptococcus in an Australian setting[J]. Front Microbiol, 2022, 13: 839079. doi: 10.3389/fmicb.2022.839079 [18] Motallebirad T, Fazeli H, Ghahiri A, et al. Prevalence, population structure, distribution of serotypes, pilus islands and resistance genes among erythromycin-resistant colonizing and invasive Streptococcus agalactiae isolates recovered from pregnant and non-pregnant women in Isfahan, Iran[J]. BMC Microbiol, 2021, 21(1): 139. doi: 10.1186/s12866-021-02186-2 [19] Hayes K, O'Halloran F, Cotter L. A review of antibiotic resistance in Group B Streptococcus: the story so far[J]. Crit Rev Microbiol, 2020, 46(3): 253-269. doi: 10.1080/1040841X.2020.1758626 [20] Bob-Manuel M, McGee L, Igunma JA, et al. Whole genome sequence based capsular typing and antimicrobial resistance prediction of Group B streptococcal isolates from colonized pregnant women in Nigeria[J]. BMC Genomics, 2021, 22(1): 627. doi: 10.1186/s12864-021-07929-z [21] Morici E, Simoni S, Brenciani A, et al. A new mosaic integrative and conjugative element from Streptococcus agalactiae carrying resistance genes for chloramphenicol (catQ) and macrolides[mef(I) and erm(TR)][J]. J Antimicrob Chemother, 2017, 72(1): 64-67. doi: 10.1093/jac/dkw367 [22] Simoni S, Vincenzi C, Brenciani A, et al. Molecular characterization of Italian isolates of fluoroquinolone-resistant Streptococcus agalactiae and relationships with chloramphenicol resistance[J]. Microb Drug Resist, 2018, 24(3): 225-231. doi: 10.1089/mdr.2017.0139 [23] Da Cunha V, Davies MR, Douarre PE, et al. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline[J]. Nat Commun, 2014, 5: 4544. doi: 10.1038/ncomms5544 [24] Wu BQ, Su JZ, Li L, et al. Phenotypic and genetic differences among Group B Streptococcus recovered from neonates and pregnant women in Shenzhen, China: 8-year study[J]. BMC Microbiol, 2019, 19(1): 185. doi: 10.1186/s12866-019-1551-2 [25] Liu YX, Liu JH. Group B Streptococcus: virulence factors and pathogenic mechanism[J]. Microorganisms, 2022, 10(12): 2483. [26] Choi Y, Han HS, Chong GO, et al. Updates on Group B Streptococcus infection in the field of obstetrics and gynecology[J]. Microorganisms, 2022, 10(12): 2398. [27] Zastempowska E, Twarużek M, Grajewski J, et al. Virulence factor genes and cytotoxicity of Streptococcus agalactiae isolated from bovine mastitis in Poland[J]. Microbiol Spectr, 2022, 10(3): e0222421. [28] Jin ZJ, Li J, Zhou HJ, et al. Serotype distribution, virulence determinants and antimicrobial susceptibility of Streptococcus agalactiae isolated from young infants[J]. Pathogens, 2022, 11(11): 1355. [29] Maeda T, Takayama Y, Fujita T, et al. Comparison between invasive and non-invasive Streptococcus agalactiae isolates from human adults, based on virulence gene profiles, capsular genotypes, sequence types, and antimicrobial resistance patterns[J]. Jpn J Infect Dis, 2021, 74(4): 316-324. [30] Lacasse M, Valentin AS, Corvec S, et al. Genotypic characterization and biofilm production of Group B Streptococcus strains isolated from bone and joint infections[J]. Microbiol Spectr, 2022, 10(2): e0232921. [31] Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome[J]. Best Pract Res Clin Obstet Gynaecol, 2021, 70: 2-9. [32] Schindler Y, Rahav G, Nissan I, et al. Group B Streptococcus virulence factors associated with different clinical syndromes: asymptomatic carriage in pregnant women and early-onset disease in the newborn[J]. Front Microbiol, 2023, 14: 1093288. [33] Paoletti LC, Kasper DL. Surface structures of Group B Streptococcus important in human immunity[J]. Microbiol Spectr, 2019, 7(2): 10.1128/microbiolspec. gpp3-0001-2017. doi: 10.1128/microbiolspec.gpp3-0001-2017