DOI:10.3969/j. issn. 1671-9638. 2014. 05. 017

2010-2012年肠球菌感染临床分布及耐药性分析

Clinical distribution and drug resistance of Enterococcus infection in 2010-2012

尹利娟(YIN Li-juan),王文惠(WANG Wen-hui)

(上海宝山中西医结合医院,上海 201999)

(Baoshan Traditional Chinese and Western Medicine Hospital, Shanghai 201999, China)

[摘 要]目的 分析某中西医结合医院 2010—2012 年临床住院患者分离的肠球菌标本来源及其耐药性。方法对该院 2010年1月1日—2012年12月31日临床住院患者分离的283株肠球菌进行分析。结果 283株肠球菌中,类肠球菌居首位(176株,62.19%),其次为屎肠球菌(97株,34.28%),其他肠球菌(10株,3.53%;包括棉子糖肠球菌5株,鹑鸡肠球菌2株,鸟肠球菌、坚韧肠球菌、铅黄肠球菌各1株)。粪肠球菌对奎奴普丁/达福普汀(93.75%)、红霉素(86.36%)和四环素(76.14%)的耐药率较高;屎肠球菌对环丙沙星、红霉素、左氧氟沙星、青霉素和氨苄西林的耐药率均>90%。共检出7株耐万古霉素肠球菌,其中4株粪肠球菌,3株屎肠球菌;耐利奈唑胺的粪肠球菌和屎肠球菌各4株。结论 医院应加强对治疗肠球菌感染的抗菌药物,特别是万古霉素和利奈唑胺的监管,防止新的耐药菌株的产生和蔓延。

[关 键 词] 肠球菌; 抗菌药物; 抗药性, 微生物; 合理用药; 耐药

[中图分类号] R969.3 [文献标识码] B [文章编号] 1671-9638(2014)05-0311-03

肠球菌是人类肠道和泌尿生殖道的正常菌群,是医院感染常见的条件致病菌。肠球菌对多种抗菌药物天然耐药和获得性耐药,由其引起的难治性感染已引起普遍关注。本研究通过分析本院 2010—2012 年 3 年间临床分离的肠球菌的分布特点和耐药性,为临床治疗肠球菌引起的感染提供依据。

1 材料与方法

- 1.1 菌株来源 所有菌株均分离自本院 2010年1月1日—2012年12月31日临床送检的各类标本,共283株。剔除同一患者相同部位分离的重复菌株。
- 1.2 试剂和仪器 菌种鉴定、药敏复合板及配套的添加剂均为德灵公司产品。羊血琼脂培养基和巧克力培养基均购自伊华生物制品公司。
- 1.3 方法 采用德灵公司 MicroScan auto SCAN4 半自动微生物鉴定仪及其配套的 P20、药敏复合板 进行细菌鉴定和药敏分析。按美国临床试验室标准 化协会(CLSI) 2012 年标准判读药敏结果。质控菌

株为金黄色葡萄球菌 ATCC 25923,由上海市临床 检验中心提供。

1.4 统计学处理 应用 WHONET 5.4 软件进行 统计分析。

2 结果

- 2.1 肠球菌菌种分布 共分离 283 株肠球菌,其中 粪肠球菌 176 株(62.19%),居首位,其次为屎肠球 菌 97 株(34.28%)。其他肠球菌所占比例较少,棉 子糖肠球菌 5 株(1.77%),鹑鸡肠球菌 2 株 (0.71%),乌肠球菌、坚韧肠球菌、铅黄肠球菌各 1 株(各占 0.35%)。
- 2.2 肠球菌标本分布 283 株肠球菌主要分离自尿标本(146 株,51.59%),其次为痰标本66 株(23.32%),血液27 株(9.54%),分泌物17 株(6.01%),胆汁10 株(3.53%),引流液和咽拭子各5 株(3.53%),其他标本(包括胸腔积液、腹腔积液和引流液等)7 株(2.47%)。
- 2.3 主要肠球菌对各种抗菌药物的耐药率 粪肠

[收稿日期] 2013-10-05

[作者简介] 尹利娟(1977-),女(汉族),上海市人,主管技师,主要从事临床微生物学研究。

[通信作者] 尹利娟 E-mail: 1585882443@qq. com

球菌对奎奴普丁/达福普汀(93.75%)、红霉素(86.36%)和四环素(76.14%)耐药率较高,对利奈唑胺和万古霉素的耐药率(2.27%)较低。屎肠球菌对环丙沙星、红霉素、左氧氟沙星、青霉素和氨苄西林的耐药率均高达90%以上,对利福平的耐药率也高达85.57%,对氯霉素(8.25%)、利奈唑胺(4.12%)和万古霉素(3.09%)的耐药率较低,见表1。3年共检出耐万古霉素的粪肠球菌4株、屎肠球菌3株,耐利奈唑胺的粪肠球菌和屎肠球菌各4株,标本主要来源于重症监护室(ICU)患者;未检出对两者均耐药的菌株,见表2。

表 1 粪肠球菌和屎肠球菌对各种抗菌药物的耐药率(%)

 抗菌药物	粪肠球菌(n=176)	屎肠球菌(n=97)
氯霉素	15. 91	8. 25
环丙沙星	60, 23	94. 85
红霉素	86. 36	92. 78
呋喃妥因	18. 18	43.30
庆大霉素	65. 91	68. 04
左氧氟沙星	59. 66	90.72
利奈唑胺	2. 27	4. 12
青霉素	10. 23	92. 78
利福平	58. 52	85. 57
链霉素	52. 84	70. 10
奎奴普丁/达福普汀	93. 75	22. 68
四环素	76. 14	24. 74
万古霉素	2. 27	3. 09
氨苄西林	5. 68	93. 81

表 2 粪肠球菌和屎肠球菌对万古霉素和利奈唑胺的药敏结果(株,%)

菌株	耐万古霉素	耐利奈唑胺	两者均敏感
粪肠球菌(n=176)	4(2.27)	4(2.27)	168(95.45)
屎肠球菌(n=97)	3(3.09)	4(4. 12)	90(92.78)

3 讨论

283 株肠球菌,以尿标本(146 株,51.59%)来源为主,这与王社梁等^[1]报道的来源标本最多的是术后引流液不同。肠球菌中,粪肠球菌(176 株,62.19%)居首位,其次是屎肠球菌(34.28%),与潘素新等^[2]报道的屎肠球菌分离率已逐渐超过粪肠球菌不同,可能是不同地区细菌分布存在差异。检出的其他肠球菌株数不足 4%,故未作药敏统计。

粪肠球菌和屎肠球菌的药敏结果有很大差异。 粪肠球菌对青霉素和氨苄西林的耐药率较低,分别 为 10. 23%和 5. 68%,提示两者可用于粪肠球菌感 染的治疗。而屎肠球菌对青霉素和氨苄西林的耐药 率则高达 92.78%和 93.81%。据报道[3], 屎肠球菌 细胞壁上的青霉素结合蛋白对青霉素亲和性降低, 导致其对 β-内酰胺类抗生素耐药。 屎肠球菌对高浓 度庆大霉素的耐药率高达 68.04%,提示氨苄西林 和庆大霉素的联合用药不适用于屎肠球菌感染的治 疗。肠球菌对氨基苷类高水平耐药的机制是由于氨 基苷修饰酶对氨基苷类抗生素修饰灭活。该修饰酶 可介导对除链霉素以外的、几乎所有临床使用的氨 基苷类抗生素的抗性,并可使青霉素或糖肽类与氨 基苷类药物的协同作用消失[4]。屎肠球菌对环丙沙 星、左氧氟沙星、青霉素、利福平和氨苄西林的耐药 率明显高于粪肠球菌,但屎肠球菌对奎奴普丁/达福 普汀的耐药率则低于粪肠球菌,且对氯霉素的耐药率仅8.25%。

肠球菌对万古霉素和利奈唑胺有较高的敏感 性。95.45%(168 株)的粪肠球菌和92.78%(90 株)的屎肠球菌对两种抗菌药物同时敏感。3年间 共分离出7株耐万古霉素肠球菌(VRE,包括粪肠 球菌 4 株和屎肠球菌 3 株),未检出对万古霉素和利 奈唑胺均耐药的菌株。对万古霉素耐药的菌株,由 于细菌细胞壁的改变,使万古霉素丧失了与之结合 的能力,而出现耐药[5]。文献[6]报道,VRE的耐药 基因可通过质粒转移给其他肠球菌属或其他种类的 细菌,如金黄色葡萄球菌,而产生多重耐药性。因 此,临床应严格监管万古霉素的使用,避免耐万古霉 素菌株的出现和蔓延。利奈唑胺是人工合成的唑烷 酮类抗生素,为细菌蛋白质合成抑制剂,其主要作用 是抑制蛋白质合成的起始阶段,一般不易与其他抑 制蛋白质合成的抗生素发生交叉耐药。文献[7-8]报 道利奈唑胺在体外对粪肠球菌及屎肠球菌均有较好 的抑菌活性,并经美国食品与药品监督管理局批准, 可用于治疗耐万古霉素的屎肠球菌感染[9]。本院已 分离到耐利奈唑胺的菌株,且国内外均有文献[10-13] 报道分离出对利奈唑胺耐药的肠球菌和葡萄球菌, 其耐药机制主要与 23S rRNA 基因的 G2576T、 T2500A及T2504A点突变有关,这可能与临床不 规范使用利奈唑胺有关。虽然对万古霉素和利奈唑 胺同时耐药的情况极少见,但近年来,国内已有屎肠球菌同时耐万古霉素和利奈唑胺的报道^[9]。一般认为耐药株多在使用抗菌药物一段时间后产生,本实验未采用稀释法进一步确认利奈唑胺的最低抑菌浓度,因此不能确定所检出的就是利奈唑胺的耐药株。为避免出现更多的耐药株,防止耐药菌的蔓延,医院临床医生应合理用药,严格把握使用利奈唑胺的适应证,杜绝滥用抗菌药物的现象出现,减少抗菌药物的使用时间,避免耐药株产生。

肠球菌是目前医院感染常见的条件致病菌,其 耐药机制复杂,不同菌种和菌株对各种抗菌药物的 耐药性也存在差异。因此,临床培养出肠球菌时,应 鉴定到种,以便为临床合理使用抗菌药物和减少医 院感染提供实验室依据。临床上在治疗肠球菌引起 的感染时,也应根据分离菌株的药敏结果合理用药, 减少经验用药,防止耐药菌株的产生和蔓延。

[参考文献]

- [1] 王社梁,钱小毛. 肠球菌临床感染及其耐药性分析[J]. 检验医学,2009,24(1):61-63.
- [2] 潘素新,孟爱然. 肠球菌属医院感染调查分析[J]. 中华医院感染学杂志,2008,18(2):259-261.
- [3] 张丽娟,刘娅力,张卓然.耐万古霉素肠球菌的微生物学及流行病学特征[J].国外医学(微生物学分册),1999,22(6);21-22.
- [4] 瞿婷婷,杜小幸,陈亚岗,等. 氨基苷类高水平耐药肠球菌的耐药性及修饰酶基因分布[J]. 中国感染与化疗杂志,2006,6(3):163-167.

- [5] 汪定成,张惠中,杨丽华,等. 利奈唑胺等抗菌药物对肠球菌属体外抗菌活性评价[J]. 中国感染控制杂志,2010,9(1):37 39.
- [6] Zhu W, Clark N C, McDougal L K. Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan [J]. Antimicrob Agents Chemother, 2008,52(2):452-457.
- [7] 朱德妹,张婴元,周乐,等. 利奈唑胺的体外抗菌作用研究[J]. 中国感染与化疗杂志,2008,8(2),81-88.
- [8] Bell J M, Turnidge J D, Bellow C H, et al. Multicentre evaluation of the in vitro activity of linezolid in the Western Pacific [J]. J Antimicrob Chemother, 2003, 51(2):339 345.
- [9] 杨青,俞云松,倪语星,等. 2009 年中国 CHINET 肠球菌属细菌耐药性监测[J]. 中国感染与化疗杂志,2010,10(6):421-425.
- [10] 章义利, 戴凌燕, 潘利伟, 等. 利奈唑胺耐药而万古霉素敏感的 屎肠球菌 1 例[J]. 温州医学院学报, 2009, 39(2):140-143.
- [11] Souli M, Sakka V, Galani I, et al. Colonisation with vancomycin- and linezolid-resistant *Enterococcus faecium* in a university hospital; molecular epidemiology and risk factor analysis [J]. Int J Antimicrob Agents, 2009, 33(2):137-142.
- [12] Gil R G,Gomez M P R, Arias A G, et al. Nosocomial outbreak of linezolid-resistant *Enterococcus faecalis* infection in a tertiary care hospital[J]. Diagn Microbio Infect Dis, 2009, 65 (2): 175 179.
- [13] Yoshida K, Shoji H, Hanaki H, et al. Linezolid-resistant methicillin-resistant *Staphylococcus aureus* isolated after long-term, repeated use of linezolid[J]. J Infect Chemother, 2009, 15(6): 417 – 419.

(本文编辑:陈玉华)