肺移植受者术后医院感染Nomogram预测模型的构建与验证
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

R181.3+2

基金项目:

江苏省科技重点研发计划社会发展基金项目(BE2022697);江苏省医院协会医院管理创新研究基金项目(JSYGY3-2023-326)


Construction and validation of nomogram predictive model for postoperative healthcare-associated infection in lung transplant recipients
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 文章评论
    摘要:

    目的 探讨肺移植受者(LTRs)术后医院感染发生的危险因素,构建列线图(nomogram)预测模型。方法 回顾性分析2019年1月—2023年12月无锡市人民医院接受肺移植手术的患者临床资料,分为训练集(n=506)和验证集(n=218)。通过LASSO回归筛选独立危险因素,纳入多因素logistic回归,构建nomogram预测模型。采用受试者工作特征(ROC)曲线、Hosmer-Lemeshow拟合优度和决策曲线评价模型区分度、校准度和临床适用度。结果 共506例LTRs,201例发生医院感染,发病率为39.72%。感染部位以下呼吸道为主,病原体以革兰阴性杆菌(鲍曼不动杆菌)为主。最终筛选出年龄大、使用体外膜肺氧合(ECMO)、双肺移植、手术时长>3 h、连续发热日数长、血常规异常次数多和联合使用抗菌药物日数长为肺移植术后医院感染的独立危险因素。ROC曲线分析结果显示,训练集的曲线下面积(AUC)为0.74(95%CI:0.70~0.78),验证集为0.71(95%CI:0.64~0.78)。Hosmer-Lemeshow测试结果显示,预测的医院感染概率和实际医院感染概率间差异无统计学意义(P>0.05)。临床决策曲线结果表明,模型在7%~71%的阈值概率值下具临床收益。结论 本研究构建的nomogram预测模型可有效评估LTRs术后感染风险,模型稳定,具有较高的临床应用价值,可为术后感染防控提供科学参考。

    Abstract:

    Objective To explore the risk factors for healthcare-associated infection (HAI) in lung transplant recipients (LTRs), and construct a predictive nomogram model. Methods Clinical data of patients who underwent lung transplant in Wuxi People’s Hospital from January 2019 to December 2023 were analyzed retrospectively. The patients were divided into a training set (n=506) and a validation set (n=218). Independent risk factors were screened through LASSO regression, and multivariate logistic regression was included to construct a nomogram prediction model. The discrimination, calibration, and clinical applicability of the model were evaluated using receiver operating characteristic (ROC) curves, Hosmer-Lemeshow goodness-of-fit, and decision curves. Results Among the 506 LTRs, 201 developed HAIs, with an incidence of 39.72%. The major infection site was lower respiratory tract, and the major pathogen were Gram-negative bacilli (Acinetobacter baumannii). Older age, use of extracorporeal membrane oxygenation (ECMO), double-lung transplant, surgery duration >3 hours, long duration of continuous fever, frequent abnormal blood routine examination, and long duration of combined use of antimicrobial agents were identified as independent risk factors for HAI after lung transplant. The ROC curve analysis results showed that the areas under the curve (AUCs) of the training set and the validation set were 0.74 (95%CI: 0.70-0.78) and 0.71 (95%CI: 0.64-0.78), respectively. The Hosmer-Lemeshow test results showed that there was no statistically significant difference between the predictive and actual probability of HAI (P>0.05). The clinical decision curve results indicated that the modelhad clinical benefits at a threshold probability value of 7%-71%. Conclusion The nomogram prediction model constructed in this study can effectively evaluate the risk of postoperative infection in LTRs. The model is stable and has high clinical application value, providing scientific reference for postoperative infection prevention and control.

    参考文献
    相似文献
引用本文

仇桑桑,许琴芬,邵君飞,等.肺移植受者术后医院感染Nomogram预测模型的构建与验证[J]. 中国感染控制杂志,2025,24(5):674-681. DOI:10.12138/j. issn.1671-9638.20256898.
QIU Sangsang, XU Qinfen, SHAO Junfei, et al. Construction and validation of nomogram predictive model for postoperative healthcare-associated infection in lung transplant recipients[J]. Chin J Infect Control, 2025,24(5):674-681. DOI:10.12138/j. issn.1671-9638.20256898.

复制
分享
文章指标
  • 摘要阅读次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期: